首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The intragenomic distribution of five retrotransposon families (297, 1731, copia, mdg1 and roo) in the species of the melanogaster complex was studied by comparing results of the Southern blotting technique in males and females with those of in situ hybridization. The degree of structural polymorphism of each family in the different species was also investigated by restriction enzyme analysis. It was found that genomic distribution is a trait that depends on the family and species. The distribution of roo is mainly euchromatic in the four species and 1731 is heterochromatic, but the distribution of families 297, copia and mdg1 is markedly different in the melanogaster and simulans clades. These families were mainly euchromatic in D. melanogaster but heterochromatic in its sibling species. In the simulans clade most copia and mdg1 elements are located on chromosome Y. Differences in genomic distribution are unrelated with structural conservation. The relation of intragenomic distribution to phylogeny, transpositional activity and the role of the host genome are discussed.  相似文献   

3.
Two major forms of glutathione S-transferase are known in Drosophila melanogaster: GST D and GST 2. In the present paper we report the existence of a third major form of glutathione S-transferase in Drosophila simulans. Induction with phenobarbital revealed a different regulation of GST between these species. Despite the fact that these two species are closely related, there was a difference in the expression profile of the enzyme implicated in the detoxification system, suggesting variations in capacity to suit their environment.  相似文献   

4.
A high degree of heterogeneity and an overall increase in number of insertion sites of the mobile elements Doc and copia were revealed in one substock of an isogenic Drosophila melanogaster stock, while in two other substocks the distribution of copia sites was highly homogenous, but that of Doc sites was again heterogenous. We therefore concluded that copia was unstable in one of the substocks and Doc was unstable in all. Doc instability presumably arose earlier than copia instability. Doc and copia transpositions were directly observed in experiments with one substock. An abundance of copia insertions was revealed in the X chromosome where insertions with deleterious effects are exposed to selection in hemizygous condition. The locations of many other mobile elements (mdg1, mdg2, mdg3, mdg4, 297, B104, H.M.S. Beagle, I, P, BS, FB) were found to be conserved in each substock and did not differ between them, indicating that these mobile elements were stable. This homogeneity is a strong argument against any possibility of inadvertent contamination.  相似文献   

5.
A novel retrotransposon, aurora, containing 324 by long terminal repeats (LTRs) was detected in Drosophila melanogaster as a 5 kb insertion in the heterochromatic Stellate gene. This insertion causes a 5 bp duplication of the integration site. Southern analysis and in situ hybridization data show that all detectable copies of aurora are immobilized in the D. melanogaster heterochromatin. However, mobile copies of aurora were revealed in the cuchromatin of D. simulans. The element was also found in various species of the melanogaster subgroup and in the D. virilis genome.The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers X70361 and X70362  相似文献   

6.
Summary The composition of mitochondrial DNA (mtDNA) was analyzed in single female flies that developed from fertilized Drosophila melanogaster eggs, into which germ plasm of D. simulans had been introduced. HpaII cleavage patterns showed that all 12 individual female flies examined had developed from eggs in which 37%–71% of the total mtDNA was D. simulans mtDNA (Ds mtDNA) and the rest was D. melanogaster mtDNA (Dm mtDNA). The stability of this heteroplasmic state in these isofemale lines was monitored for seven generations at both individual and population levels. Results showed that the heteroplasmy of Dm and Ds mtDNAs was stably transmitted for at least three generations at the population level, but showed stochastic segregation at the individual level. After 4–6 generations, all individuals lost Ds mtDNA. The mechanisms of preferential loss of Ds mtDNA and of transmission of heteroplasmic mtDNA to descendants are discussed.  相似文献   

7.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The hypothesis of optimal host species selection predicts that when a parasitoid has the choice between two host species, it will choose the species thay gives the best survival chances for its progeny. We confirmed this hypothesis by laboratory experiments with Leptopilina boulardi Barb. et al., a cynipid parasitoid which prefers Drosophila melanogaster Meigen (the host species most suitable for parasitoid survival) above D. simulans Sturt. As far as fitness parameters are concerned, the fertility of L. boulardi is higher with D. melanogaster; the egg laying can be spread out over a long period when this host is relatively scarce. This does not occur with D. simulans in which parasitic oviposition stops soon when this host is not abundant.Investigations of this foraging strategy were done under more complex natural conditions. We found that L. boulardi has a type III functional response with D. melanogaster only; furthermore, it seems that a switching effect may exist with this host. Parasitoid females appear to distribute their eggs more regularly on D. melanogaster, thus avoiding superparasitism. This seems to be independent of the relative frequency of this host. However, superparasitism of D. simulans did occur more frequently when this host was scarce.
Stratégie de ponte de Leptopilina boulardi (hyménoptère parasite de drosophiles) dans les conditions naturelles
Résumé Le concept de réponse optimale d'un parasite vis-à-vis de l'hôte le plus favorable pour son développement demeure surtout théorique et n'a pu être vérifié que dans les conditions de laboratoire. Nous avons montré que Drosophila melanogaster s'avère être, par rapport à D. simulans, l'hôte le plus favorable pour le développement du cynipide parasite Leptopilina boulardi. Une étude sur le terrain a démontré que ce parasite présente une réponse fonctionnelle densité dépendante vis-à-vis de D. melanogaster et non vis-à-vis de D. simulans, avec un effet de bascule. D'autre part, il s'avère que ce parasite exploite beaucoup mieux son hôte, en évitant le superparasitisme, ceci étant démontré au laboratoire et dans la nature. Enfin, il apparaît qu'il est capable d'allonger sa période de ponte lorsque cet hôte est rare, ce qui ne se produit pas avec D. simulans.
  相似文献   

9.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   

10.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

11.
12.
Summary Six kinds of autonomously replicating sequences (ARSs) derived from Drosophila or tobacco were inserted into the vector pDSV, constructed with pSV2-gpt and the copia long terminal repeat (LTR). The resulting ARS-containing plasmids, pDSV-ARSs, were transfected into the cultured Drosophila cells of GM1 S1cl1. Most of the plasmids remained for about 2 weeks and some for about 1 month in these cells. The retention time of the plasmid was not directly correlated with autonomously replicating activity of ARSs detected in the yeast. Two plasmids, one carrying ARS of Drosophila nuclear DNA and the other carrying tobacco DNA, showed the longest retention time in transformed cells and replication was confirmed in these cells. Some of these long lived plasmids were recovered, however, as modified forms. Other plasmids had disappeared 1 month after transfection. Two months following transfection, none of plasmids were recovered but they were detected in nuclear DNA as the integrated form. The integration patterns in all the cells transformed by different kinds of ARS-containing plasmids were similar to each other, and to the distribution pattern of copia LTR in the genome. These results suggest that copia LTR sequences contained in the pDSV-ARSs may participate in the integration process of these plasmids into Drosophila DNA.  相似文献   

13.
An electrophoretic study was carried out to compare the geographic pattern of genetic variation in Drosophila simulans with that of its sibling species, Drosophila melanogaster. An identical set of 32 gene-protein loci was studied in four geographically distant populations of D. simulans and two populations of D. melanogaster, all originating from Europe and Africa. The comparison yielded the following results: (1) tropical populations of D. simulans were, in terms of the number of unique alleles, average heterozygosity per locus, and percentage of loci polymorphic, more variable than conspecific-temperate populations; (2) some loci in both species showed interpopulation differences in allele frequencies that suggest latitudinal clines; and (3) temperate-tropical genetic differentiation between populations was much less in D. simulans than in D. melanogaster. Similar differences between these two species have previously been shown for chromosomal, quantitative, physiological, and middle-repetitive DNA variation. Estimates of N m (number of migrants per generation) from the spatial distribution of rare alleles suggest that both species have similar levels of interpopulation gene flow. These observations lead us to propose two competing hypotheses: the low level of geographic differentiation in D. simulans is due to its evolutionarily recent worldwide colonization and, alternatively, D. simulans has a narrower niche than D. melanogaster. Geographic variation data on different genetic elements (e.g., mitochondrial DNA, two-dimensional proteins, etc.) are required before these hypotheses can be adequately tested.We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

14.
Jin S  Hu GA  Qian YH  Zhang L  Zhang J  Qiu G  Zeng QT  Gui JF 《Genetica》2005,125(2-3):223-230
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5–10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.  相似文献   

15.
16.
Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or 6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.  相似文献   

17.
A 1194 by open reading frame that codes for a 398 amino acid peptide was cloned from a gt11 library of Drosophila melanogaster genomic DNA. The predicted peptide sequence is very similar to three previously characterized protein sequences that are encoded by the ftsZ genes in Escherichia coli, Bacillus subtilis and Rhizobium meliloti. The FtsZ protein has a major role in the initiation of cell division in prokaryotic cells. Using a tetracycline treatment that eradicates bacterial parasites from insects, the ftsZ homologue has been found to be derived from a bacterium that lives within the strain. However, polymerase chain reaction (PCR) amplification of the gene from treated embryos suggests that it is not derived from a gut bacterium. Nevertheless, by amplifying and characterizing part of the 16S rRNA from this bacterium we have been able to demonstrate that it is a member of the genus Wolbachia, a parasitic organism that infects, and disturbs the sexual cycle of various strains of Drosophila simulans. We suggest that this ftsZ homologue is implicated in the cell division of Wolbachia, an organism that fails to grow outside the host organism. Sequence and alignment analysis of this ftsZ homologue show the presence of a potential GTP-binding motif indicating that it may function as a GTPase. The consequences of this function particularly with respect to its role in cell division are discussed.  相似文献   

18.
Summary The abundance of the transposable elementmariner differs dramatically in the genomes of the closely related speciesDrosophila simulans, D. mauritiana, D. sechellia, andD. melanogaster. Natural populations ofD. simulans andD. mauritiana have 1–10 and 20–30 copies per diploid genome, respectively, and the insertion sites are polymorphic. The element has not been found inD. melanogaster. In this paper we show thatD. sechellia, a species endemic to the Seychelles Islands, contains only twomariner elements that are at fixed sites in the genome. One element, inserted in chromosome 2R at 51A1–2, contains three deletions and is missing much of the 3 end. The other element, inserted in chromosome 3L at 64A10–11, is the full length of 1286 bp. Although the sequence of the full-length element is polymorphic in populations ofD. sechellia, at least some of the sequences are closely related to elements fromD. simulans andD. mauritiana that are known to be active. However, judging from the progeny of crosses betweenD. sechellia andD. simulans, the biological activity of the full-lengthD. sechellia element appears to be low, either because of the nucleotide sequence of the element or because of its position in the genome, or both.  相似文献   

19.
Summary Single-fly polymerase chain reaction amplification and direct DNA sequencing revealed high levels of length polymorphism in the threonine-glycine encoding repeat region of theperiod (per) gene in natural populations ofDrosophila melanogaster. DNA comparison of two alleles of identical lengths gave a high number of synonymous substitutions suggesting an ancient time of separation. However detailed examination of the sequences of different Thr-Gly length variants indicated that this divergence could be understood in terms of four deletion/insertion events. InDrosophila pseudoobscura a length polymorphism is observed in a five-amino acid degenerate repeat, which corresponds tomelanogaster's Thr-Gly domain. In spite of the differences betweenD. melanogaster andD. pseudoobscura in the amino acid sequence of the repeats, the predicted secondary structures suggest evolutionary and mechanistic constraints on theper protein of these two species.  相似文献   

20.
Lethal phases of the hybrids betweenDrosophila melanogaster and its sibling species,D. simulans are classified into three types: (1) embryonic lethality in hybrids carryingD. simulans cytoplasm andD. melanogaster X chromosome, (2) larval lethality in hybrids not carryingD. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carryingD. simulans X. The same lethal phases are also observed when either of the two other sibling species,D. mauritiana orD. sechellia, is employed for hybridization withD. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号