首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The exchange-transferred NOE method to determine the three-dimensional structure of peptides bound to proteins, or other macromolecular systems, is becoming increasingly important in drug design efforts and for large or multicomponent assemblies, such as membrane receptors, where structural analysis of the full system is intractable. The exchange-transferred nuclear Overhauser effect spectroscopy (etNOESY) method allows the determination of the bound-state conformation of the peptide from the intra-molecular NOE interactions between ligand protons. Because only ligand–ligand NOEs are generally observable, the etNOESY method is restricted to fewer NOEs per residue than direct protein structure determination. In addition, the averaging of relaxation rates between free and bound states affects the measured cross-peak intensities, and possibly the accuracy of distance estimates. Accordingly, the study reported here was conducted to examine the conditions required to define a reliable structure. The program CORONA was used to simulate etNOE data using a rate-matrix including magnetic relaxation and exchange rates for two peptide–protein complexes derived from the reference complex of cAMP-dependent protein kinase ligated with a 24-residue inhibitor peptide. The results indicate that reasonably accurate peptide structures can be determined with relatively few NOE interactions when the interactions occur between non-neighboring residues. The reliability of the structural result is suggested from the pattern of NOE interactions. A structure with an accuracy of approximately 1.3 Å rms difference for the main-chain atoms can be obtained when etNOE interactions between non-neighboring residues occur over the length of the peptide. The global precision is higher (approximately 0.9 Å rms difference) but is not correlated to global accuracy. A local definition of precision along the backbone appears to be a good indicator of the local accuracy.  相似文献   

2.
The large number of interproton distances extracted from two-dimensional nuclear Overhauser effect spectra has enabled determination of biomolecular structures in solution. The accuracy of those distances is increased substantially and the number of distances increased significantly by analysis of the experimental peak intensities using a complete relaxation matrix approach. More distances and more accurate distances both lead to a higher resolution structure. A complete relaxation matrix analysis also enables simulation of peak intensities for any postulated structure; comparison of these intensities with experimental intensities can provide a guide for structure refinement as well as a measure of the quality of the structure derived.  相似文献   

3.
NMR structures of biomolecules are primarily based on nuclear Overhauser effects (NOEs) between protons. For the interpretation of NOEs in terms of distances, usually the assumption of a single rotational correlation time corresponding to a rigid molecule approximation is made. Here we investigate the effect of fast internal motions of the interproton vectors in the context of the relaxation matrix approach for structure determination of biomolecules. From molecular dynamics simulations generalized order parameters were calculated for the DNA octamer d(GCGTTCGC).d(CGCAACGC), and these were used in the calculation of NOE intensities. The magnitudes of the order parameters showed some variation for the different types of interproton vectors. The lowest values were observed for the interresidue base H6/H8-H2" proton vectors (S2 = 0.60), while the cytosine H5-H6 interproton vectors were among the most motionally restricted (S2 = 0.92). Inclusion of the motion of the interproton vectors resulted in a much better agreement between theoretically calculated NOE spectra and the experimental spectra measured by 2D NOE spectroscopy. The interproton distances changed only slightly, with a maximum of 10%; nevertheless, the changes were significant and resulted in constraints that were better satisfied. The structure of the DNA octamer was determined by using restrained molecular dynamics simulations with H2O as a solvent, with and without the inclusion of local internal motions. Starting from A- or B-DNA, the structures showed a high local convergence (0.86 A), while the global convergence for the octamer was ca. 2.6 A.  相似文献   

4.
G Lancelot  J L Guesnet  F Vovelle 《Biochemistry》1989,28(19):7871-7878
The solution structure of the duplex formed by the association of the unnatural oligonucleotide alpha-d(TCTAAAC) with its natural and parallel complementary sequence beta-d(AGATTTG) was investigated by nuclear magnetic resonance spectroscopy and constrained molecular mechanics calculations. The structure was refined on the basis of interproton distances determined by NOE measurements for a series of mixing times. The NOE values were converted to distances by using the complete 134 x 134 relaxation matrix including all proton dipole-dipole interactions and spin diffusion. The computation of the relaxation matrix requires the Cartesian coordinates of the oligonucleotide, which are not known, a priori. To avoid this ambiguity, we used an iterative procedure in which the new distance constraints are obtained by using the complete relaxation matrix calculated from the previous structure. After three iterations, the process converged. The unnatural duplex alpha-d(TCTAAAC)-beta-d(AGATTTG) adopts in solution a right-helical structure with Watson-Crick base pairing, an anti conformation on the glycosyl linkage on the beta-strand, a syn conformation on the alpha-strand, and a 3'-exo conformation of the deoxyriboses for both sugar anomers. The three-dimensional structure obtained allowed us to describe the local heterogeneity of the duplex.  相似文献   

5.
A previous publication described the use of qualitative intramolecular 1H-transferred nuclear Overhauser effect measurements to determine the conformations of flexible ligands at monoclonal anti-opiate antibody binding sites. This paper concentrates on the quantitative interpretation of experiments of this type using the ligand nalorphine (N-allyl morphine) and a single anti-opiate monoclonal antibody. I compare the experimental unidimensional driven nuclear Overhauser effect buildup curves to theoretical curves derived with a knowledge of the fixed interproton distances in the ligand. The discussion covers the potential accuracies of derived distances and concentrates on two problem areas associated with determining structures from this type of experiment. The most serious one is the case where, because of particular multiproton spatial distributions, spin diffusion is so rapid that it cannot be determined experimentally and where numerical fits of theoretical calculations are misleading. The results show that, while intraligand spin diffusion complicates the interpretation for some proton pairs, with many others accuracies within about 0.3 A for interproton distances from 2 to 4 A are attainable. The results confirm the earlier report that the conformation of nalorphine in this antibody binding site differs from the major one present in solution or in the crystal. An important aspect of the work is that theoretical prediction of nuclear Overhauser effect time-dependence is an important practical tool for recognizing cases where interpretation of experiments will be difficult. Initial data on protein-to-ligand transferred nuclear Overhauser effect are presented, which show that at least one aromatic amino acid residue is closely involved in the binding of the ligand. The companion paper presents the primary sequences of the variable regions of the antibodies being used in our studies. In this paper, these and associated immunochemical studies are correlated with the nuclear magnetic resonance results. The combination of data presented in the two papers provides a basis for future work on protein-ligand interproton distances in the range 1 to 5 A using both transferred nuclear Overhauser effect (for rapidly exchanging ligands) and isotope-edited, indirectly detected nuclear Overhauser effect (for tightly bound ligands).  相似文献   

6.
Summary The effect of experimental and integration errors on the calculations in interproton distances from NOE intensities is examined. It is shown that NOE intensity errors can have a large impact on the distances determined. When multiple spin (spin diffusion) effects are significant, the calculated distances are often underestimated, even when using a complete relaxation matrix analysis. In this case, the bias of distances to smaller values is due to the random errors in the NOE intensities. We show here that accurate upper and lower bounds of the distances can be obtained if the intensity errors are properly accounted for in the complete relaxation matrix calculations, specifically the MARDIGRAS algorithm. The basic MARDIGRAS algorithm has been previously described [Borgias, B.A. and James, T.L. (1990) J. Magn. Reson., 87, 475–487]. It has been shown to provide reasonably good interproton distance bounds, but experimental errors can compromise the quality of the resulting restraints, especially for weak cross peaks. In a new approach introduced here, termed RANDMARDI (random error MARDIGRAS), errors due to random noise and integration errors are mimicked by the addition of random numbers from within a specified range to each input intensity. Interproton distances are then calculated for the modified intensity set using MARDIGRAS. The distribution of distances that define the upper and lower distance bounds is obtained by using N randomly modified intensity sets. RANDMARDI has been used in the solution structure determination of the interstrand cross-link (XL) formed between 4-hydroxymethyl-4,5,8-trimethylpsoralen (HMT) and the DNA oligomer d(5-GCGTACGC-3)2 [Spielmann, H.P. et al. (1995) Biochemistry, 34, 12937–12953]. RANDMARDI generates accurate distance bounds from the experimental NOESY cross-peak intensities for the fixed (known) interproton distances in XL. This provides an independent internal check for the ability of RANDMARDI to accurately fit the experimental data. The XL structure determined using RANDMARDI-generated restrains is in good agreement with other biophysical data that indicate that there is no bend introduced into the DNA by the cross-link. In contrast, isolated spin-pair approximation calculations give distance restraints that, when applied in a restrained molecular dynamics protocol, produce a bent structure.Abbreviations NOE nuclear Overhauser effect - SD standard deviation - HMT 4-hydroxymethyl-4,5,8-trimethylpsoralen - XL psoralen-DNA interstrand cross-link  相似文献   

7.
Dynamic averaging effects from internal motions on interproton distances estimated from nuclear Overhauser effects (NOE) are determined by using a molecular dynamics simulation of lysozyme. Generalized order parameters measuring angular averaging and radial averaging parameters are calculated. The product of these two parameters describes the full averaging effects on cross-relaxation. Analysis of 2778 non-methyl NOE interactions from the protein interior and surface indicates that distances estimated by assuming a rigid molecule have less than 10% error for 89% of the NOE interactions. However, analysis of 1854 methyl interactions found that only 68% of the distances estimated from cross-relaxation rates would have less than 10% error. Qualitative evaluation of distances according to strong, medium and weak NOE intensities, when used to define only the upper bound for interproton separation, would misassign less than 1% of the distance constraints because of motional averaging. Internal motions do not obscure the identification of secondary structure, although some instances of significant averaging effects were found for interactions in alpha-helical regions. Interresidue NOEs for amino acids more than three residues apart in the primary sequence are more extensively averaged than intraresidue or short-range interresidue NOEs. Intraresidue interactions exhibit a greater degree of angular averaging than those involving interresidue proton pairs. An internal motion does not equally affect all NOE interactions for a particular proton. Thus, incorporation of averaging parameters in nuclear magnetic resonance structure determination procedures must be made on a proton-pair-wise basis. On the basis of the motional averaging results, particular fixed-distance proton pairs in proteins are suggested for use as distance references. A small percentage of NOE pairs localized to three regions of the protein exhibit extreme averaging effects from internal motions. The regions and types of motions involved are described.  相似文献   

8.
The solution conformation of the 27-residue polypeptide hormone secretin in dimethyl sulfoxide has been determined on the basis of 1H-NMR measurements. The experimental data set used in the structure determination consisted of 98 nuclear-Overhauser-enhancement-derived interproton and dihedral angle restraints from coupling constants. The NH-NH and H alpha-NH NOEs were determined from build-up rates, while the remaining distances were classified in a qualitative manner. The structure calculations consisted of two phases. First, dynamical simulated annealing calculations were carried out to find conformations of the peptide which satisfy NOE and phi dihedral restraints. The convergence of ten calculated structures was good except for those regions of the molecule where NOE data were not unambiguous. From the calculated set another initial structure was built which was again minimized in several 5-ps calculations now employing the full empirical energy function. The resulting structures of secretin reveal conformationally well-defined regions, but not a single uniform secondary structure. The structure is different from the calculated structure from trifluoroethanol/water measurements.  相似文献   

9.
P J Kraulis  T A Jones 《Proteins》1987,2(3):188-201
A method to build a three-dimensional protein model from nuclear magnetic resonance (NMR) data using fragments from a data base of crystallographically determined protein structures is presented. The interproton distances derived from the nuclear Overhauser effect (NOE) data are compared to the precalculated distances in the known protein structures. An efficient search algorithm is used, which arranges the distances in matrices akin to a C alpha diagonal distance plot, and compares the NOE distance matrices for short sequential zones of the protein to the data base matrices. After cluster analysis of the fragments found in this way, the structure is built by aligning fragments in overlapping zones. The sequentially long-range NOEs cannot be used in the initial fragments search but are vital to discriminate between several possible combinations of different groups of fragments. The method has been tested on one simulated NOE data set derived from a crystal structure and one experimental NMR data set. The method produces models that have good local structure, but may contain larger global errors. These models can be used as the starting point for further refinement, e.g., by restrained molecular dynamics or interactive graphics.  相似文献   

10.
Multispin magnetization transfer, or spin diffusion, is a significant source of error in NOESY-derived distance measurements for the determination of nucleic acid solution structures. The BD-NOESY and CBD-NOESY experiments, which allow the measurement of interproton distances with greatly reduced contributions from spin diffusion, have been adapted to structural analysis in RNA oligonucleotides. The techniques are applied to a lead-dependent ribozyme (LZ2). We demonstrate the measurement of both aromatic proton–aromatic proton NOEs free of spin diffusion involving the intervening ribose moieties and aromatic proton–ribose proton NOEs free of the efficient cross-relaxation within the ribose ring. In LZ2, the accuracy and precision of the resulting distances are significantly improved. We also find that, by allowing the use of longer mixing times with greater sensitivity, the experimental attenuation of spin diffusion in RNA increases the distance range of interactions that can be analyzed. This effect permits measurement of important long-range distances in LZ2 that are not accessible with standard techniques. Thus, these techniques allow the simultaneous optimization of the number, accuracy, and precision of distance constraints used for RNA structure determinations.  相似文献   

11.
Proton homonuclear two-dimensional (2D) NOE spectra were obtained for the decamer [d(ATATATAUAT)]2 as a function of mixing time, and proton resonance assignments were made. Quantitative assessment of the 2D NOE cross-peak intensities was used in conjunction with the program MARDIGRAS, which entails a complete relaxation matrix analysis of the 2D NOE peak intensities, to obtain a set of upper and lower bound interproton distance constraints. The analysis with MARDIGRAS was carried out using three initial models: A-DNA, B-DNA and Z-DNA. The distance constraints determined were essentially the same regardless of initial structure. These experimental structural constraints were used with restrained molecular dynamics calculations to determine the solution structure of the decamer. The molecular dynamics program AMBER was run using A-DNA or B-DNA as starting model. The root-mean-square (rms) difference between these two starting models is 0.504 nm. The two starting models were subjected to 22.5 ps of restrained molecular dynamics calculations. The coordinates of the last 10.5 ps of the molecular dynamics runs were averaged to give two final structures. MDA and MDB. The rms difference between these two structures is 0.09 nm, implying convergence of the two molecular dynamics runs. The 2D NOE spectral intensities calculated for the derived structures are in good agreement with experimental spectra, based on sixth-root residual index analysis of intensities. A detailed examination of the structural features suggests that while the decamer is in the B-family of DNA structures, many torsion angle and helical parameters alternate from purine to pyrimidine, with kinks occurring at the U-A steps.  相似文献   

12.
R Stolarski  W Egan  T L James 《Biochemistry》1992,31(31):7027-7042
The self-complementary DNA octamer [d(GGAATUFCC)]2, containing the EcoRI recognition sequence with one of the thymines replaced by 5-fluorouracil (UF), was synthesized. Proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra, as well as one-dimensional spectra at different temperatures, were recorded for the octamer. Consequently, all proton resonances were assigned. The thermally induced transition from the duplex to single strands has been followed, demonstrating the stability of the duplex containing 5-fluorouracil. Simulations of the 2QF-COSY cross-peaks by means of the programs SPHINX and LINSHA were compared with experimental data, establishing scalar coupling constants for the sugar ring protons and hence sugar pucker parameters. The deoxyribose rings exhibit a dynamic equilibrium of N- and S-type conformers with 75-95% populations of the latter. Two programs used for complete relaxation matrix analysis 2D NOE spectra, CORMA and MARDIGRAS, were modified to account for the influence of the fluorines on dipolar interactions in the proton system. Quantitative assessment of the 2D NOE cross-peak intensities for different mixing times, in conjunction with the program MARDIGRAS, gave a set of interproton distances for each mixing time. The largest and smallest values of each of the interproton distances were chosen as the upper and lower bounds for each distance constraint. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 35 ps were performed, utilizing 284 experimental distance and torsion angle constraints and two different starting structures, energy-minimized A- and B-DNA. Convergence to similar structures with a root-mean-square deviation of 1.2 A was achieved for the central hexamer of the octamer, starting from A- and B-DNA. The average structure from six different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and showed a substantial improvement of the 2D NOE sixth-root residual index in comparison with classical and energy-minimized B-DNA. A detailed analysis of the conformation of the final structure and comparison with structures of similar sequences, obtained by different methods, were performed.  相似文献   

13.
Summary A set of computer programs called DINOSAUR has been developed, which allows the refinement of biomolecular structures directly from 2D NOE intensities. The NOE restraining potential implemented emphasises the weak intensities corresponding to larger distances which are more likely to determine the three-dimensional structure. An approximation based on a two-spin approximation is proposed for the gradient of the NOE intensities instead of the exact solution which is extremely time-consuming. The DINOSAUR routines have been implemented in various refinement programs (Distance bound Driven Dynamics, Molecular Dynamics and Energy Minimisation) and tested on an eight-residue model peptide.  相似文献   

14.
H Robinson  A H Wang 《Biochemistry》1992,31(13):3524-3533
We have developed a simple and quantitative procedure (SPEDREF) for the refinement of DNA structures using experimental two-dimensional nuclear Overhauser effect (2D NOE) data. The procedure calculates the simulated 2D NOE spectrum using the full matrix relaxation method on the basis of a molecular model. The volume of all NOE peaks is measured and compared between the experimental and the calculated spectra. The difference of the experimental and simulated volumes is minimized by a conjugated gradient procedure to adjust the interproton distances in the model. An agreement factor (analogous to the crystallographic R-factor) is used to monitor the progress of the refinement. The procedure is an The agreement is considered to be complete when several parameters, including the R-factor, the energy associated with the molecule, the local conformation (as judged by the sugar pseudorotation), and the global conformation (as judged by the helical x-displacement), are refined to their respective convergence. With the B-DNA structure of d(CGATCG) as an example, we show that DNA structure may be refined to produce calculated NOE spectra that are in excellent agreement with the experimental 2D NOE spectra. This is judged to be effective by the low R-factor of approximately 15%. Moreover, we demonstrate that not only are NOE data very powerful in providing details of the local structure but, with appropriate weighting of the NOE constraints, the global structure of the DNA double helix can also be determined, even when starting with a grossly different model. The reliability and limitations of a DNA structure as determined by NMR spectroscopy are discussed.  相似文献   

15.
Quantitative method is developed for evaluation interproton distances in peptides in solution. The method is based on the measurement of the relative intensities of the cross-peaks in the pure-phase absorption NOESY spectra. The ratios of the cross-peak intensities IN alpha/I alpha N and INN/I alpha N enable to determine the corresponding interproton distances dN alpha, d alpha N and dNN for several amino acid residues. These distances can be used to estimate other distances with cross-peaks in NOESY spectra. As example, the interproton distances are determined in a cyclic hexapeptide, namely cyclic analogue of substance P: cyclo [H-Glu-Phe-Phe-Gly-Leu-Met-NH(CH2)3-NH-]. The spatial structure of the molecule in dimethylsulphoxide solution is established.  相似文献   

16.
The three-dimensional structure of the duplex formed by the association of the unnatural oligonucleotide alpha-d(TCTAAACTC) covalently linked to an acridine derivative (m5Acr) with its natural and parallel complementary sequence beta-d(AGATTTGAG) was investigated by nuclear magnetic resonance spectroscopy and constrained molecular mechanics calculations. All the nonexchangeable and exchangeable resonances were assigned in this duplex. The structure was refined by using interproton distances determined by NOE measurements. The NOE values were converted into distances by using the complete 190 x 190 relaxation matrix. The unnatural duplex Acrm5-alpha-d(TCTAAACTC)-beta-d(AGATTTGAG) forms a parallel right-handed helix with Watson-Crick base pairing; the alpha and beta deoxyriboses adopt a 3'-exo conformation. The acridine moiety was found stacked up the C9-G9 base pair. The structure of the first seven base pairs of this duplex was found similar to that of the duplex alpha-d(TCTAAAC)-beta-d(AGATTTG), which we had already investigated [Lancelot, G., et al. (1989) Biochemistry 28, 7871-7878]. Since these structures were generated by using experimental NOE values obtained independently on macromolecules whose global correlation time was different (3.8 and 2.2 ns), we conclude that this comparison is a good test of the viability of our method to generate three-dimensional structures of oligonucleotides in solution. Starting from different initial conformations, we show that the NOE constraints allow one to reach the same final restrained conformation, taking into account implicitly the solvent effect.  相似文献   

17.
Summary The effects of selective deuteration on calculated NOESY intensities have been analyzed for the structure of theE. coli trp aporepressor, a 25 kDa protein. It is shown that selectively deuteratedtrp aporepressor proteins display larger calculated NOESY intensities than those for the same interproton distances in the natural abundance protein. The relatively larger magnetization transfer is demonstrated by a comparison of the NOE build-up curves for specific proton pairs, and for the calculated NOE intensities of short-range NOEs to backbone amide protons. This increase in intensity is especially pronounced for the NH1–NH1+1 cross peaks in the -helical regions, and particularly for amide protons of two sequential deuterated residues. The effect is shown to be further intensified for longer mixing times. It is also shown that in all cases, each amide proton exhibits stronger NOEs to its own side chain, with an enhanced effect for deuterated derivatives. This theoretical analysis demonstrates that an evaluation of the relative NOE intensities for different selectively deuterated analogs may be an important tool in assigning NMR spectra of large proteins. These results also serve as a guide for the interpretation of NOEs in terms of distances for structure calculations based on data using selectively deuterated proteins.  相似文献   

18.
Zabell AP  Post CB 《Proteins》2002,46(3):295-307
A method is described for docking a large, flexible ligand using intra-ligand conformational restraints from exchange-transferred NOE (etNOE) data. Numerous conformations of the ligand are generated in isolation, and a subset of representative conformations is selected. A crude model of the protein-ligand complex is used as a template for overlaying the selected ligand structures, and each complex is conformationally relaxed by molecular mechanics to optimize the interaction. Finally, the complexes were assessed for structural quality. Alternative approaches are described for the three steps of the method: generation of the initial docking template; selection of a subset of ligand conformations; and conformational sampling of the complex. The template is generated either by manual docking using interactive graphics or by a computational grid-based search of the binding site. A subset of conformations from the total number of peptides calculated in isolation is selected based on either low energy and satisfaction of the etNOE restraints, or a cluster analysis of the full set. To optimize the interactions in the complex, either a restrained Monte Carlo-energy minimization (MCM) protocol or a restrained simulated annealing (SA) protocol were used. This work produced 53 initial complexes of which 8 were assessed in detail. With the etNOE conformational restraints, all of the approaches provide reasonable models. The grid-based approach to generate an initial docking template allows a large volume to be sampled, and as a result, two distinct binding modes were identified for a fifteen-residue peptide binding to an enzyme active site.  相似文献   

19.
The solution structures of two alternating purine-pyrimidine octamers, [d(G-T-A-C-G-T-A-C)]2 and the reverse sequence [d(C-A-T-G-C-A-T-G)]2, are investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. Chemical shift assignments are obtained for non-exchangeable protons by a combination of two-dimensional correlation and nuclear Overhauser enhancement (NOE) spectroscopy experiments. Distances between protons are estimated by extrapolating distances derived from time-dependent NOE measurements to zero mixing time. Approximate dihedral angles are determined within the deoxyribose ring from coupling constants observed in one and two-dimensional spectra. Sets of distance and dihedral determinations for each of the duplexes form the bases for structure determination. Molecular dynamics is then used to generate structures that satisfy the experimental restraints incorporated as effective potentials into the total energy. Separate runs start from classical A and B-form DNA and converge to essentially identical structures. To circumvent the problems of spin diffusion and differential motion associated with distance measurements within molecules, models are improved by NOE-based refinement in which observed NOE intensities are compared to those calculated using a full matrix analysis procedure. The refined structures generally have the global features of B-type DNA. Some, but not all, variations in dihedral angles and in the spatial relationships of adjacent base-pairs are observed to be in synchrony with the alternating purine-pyrimidine sequence.  相似文献   

20.
The spatial structure of a synthetic peptide, an analogue of the membrane spanning segment B (residues 34-65) of bacterioopsin from Halobacterium halobium, has been refined. Backbone torsion angles were derived from intensities of short-range interproton NOEs. These, together with a complete set of the NOEs integral intensities formed the basis for the three-dimensional structure refinement by the energy minimization with consideration of NOE penalty functions. Analysis indicates the right-handed alpha-helical conformation of segment B extending from Asp-38 to Tyr-64 with a kink of the helical axis (27 degrees) at Pro-50. The most stable region with an average root-mean-square deviation of 0.43 A between the backbone atoms includes residues 42-60 in six energy refined structures. The N-terminal part of segment B (residues 34-37) has no ordered conformation. The inferred structure is in close agreement with the electron cryomicroscopy structure of bacteriorhodopsin, differing from it in conformations of most of the side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号