首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
J Wu  K V Krutovskii  S H Strauss 《Genetics》1998,150(4):1605-1614
We examined mitochondrial DNA polymorphisms via the analysis of restriction fragment length polymorphisms in three closely related species of pines from western North America: knobcone (Pinus attenuata Lemm.), Monterey (P. radiata D. Don), and bishop (P. muricata D. Don). A total of 343 trees derived from 13 populations were analyzed using 13 homologous mitochondrial gene probes amplified from three species by polymerase chain reaction. Twenty-eight distinct mitochondrial DNA haplotypes were detected and no common haplotypes were found among the species. All three species showed limited variability within populations, but strong differentiation among populations. Based on haplotype frequencies, genetic diversity within populations (HS) averaged 0.22, and population differentiation (GST and theta) exceeded 0.78. Analysis of molecular variance also revealed that >90% of the variation resided among populations. For the purposes of genetic conservation and breeding programs, species and populations could be readily distinguished by unique haplotypes, often using the combination of only a few probes. Neighbor-joining phenograms, however, strongly disagreed with those based on allozymes, chloroplast DNA, and morphological traits. Thus, despite its diagnostic haplotypes, the genome appears to evolve via the rearrangement of multiple, convergent subgenomic domains.  相似文献   

2.
We studied phylogenetic relationships among populations and species in the California closed-cone pines (Pinus radiata D. Don, P. attenuata Lemm., and P. muricata D. Don) via chloroplast DNA restriction site analysis. Data on genetic polymorphism within and among 19 populations in the three species were collected using9 to 20 restriction enzymes and 38 to 384 trees. Because only five clades and extremely low intraclade diversity were found, additional phylogenetic data were collected using a single representative per clade and two outgroup species, P. oocarpa Schiede and P. jeffreyi Loud. In total, 25 restriction enzymes were employed and approximately 2.7 kb surveyed (2.3% of genome). The five clades recognized were Monterey pine, knob-cone pine, and the southern, intermediate, and northern races of bishop pine. On the basis of bootstrapping, both Wagner and Dollo parsimony analyses strongly separated the northern and intermediate races of bishop pine from the southern race; knobcone pine from Monterey and bishop pines; and the closed-cone pines from the two outgroups. Approximate divergence times were estimated for the lineages leading to knob-cone pine and to the intermediate and northern populations of bishop pine. The position of Monterey pine relative to bishop pine within their monophyletic clade was unresolved. Surprisingly, Montery pine and the southern race of bishop pine were much more similar to one another than was the southern race of bishop pine to its conspecific intermediate and northern races. Both the Monterey and southern bishop pine lineages also evolved severalfold more slowly than did the knobcone pine and intermediate-northern bishop pine lineages. These results differ significantly from a recent allozyme study, corroborating previous observations that chloroplast genome phylogeny can depart substantially from that of nuclear genes.  相似文献   

3.
We analyzed mitochondrial (mt) DNA restriction fragment length polymorphisms (RFLPs) associated with cytochrome oxidase, subunit I (coxI)-related gene sequences in 268 trees derived from 19 natural populations of three species of pines from California (USA): Monterey pine (Pinus radiata D. Don), bishop pine (P. Muricata D. Don), and knobcone pine (P. attenuata Lemm.). Total genomic DNA was digested with four restriction endonucleases and probed with a 750-bp fragment of the mitochondrialcoxI gene amplified fromP. attenuata via the polymerase chain reaction (PCR). ThecoxI gene is repeated at least 4 times in some populations, and all variants that we observed resulted from complex rearrangements rather than from point mutations. There was limited intrapopulation variation, but strong differentiation among populations. When applied to haplotype frequencies, Nei's gene diversity within populations (Hs) averaged 7% (±3), and Gst varied from 75% forP. Radiata to 96% forP. muricata. The high degree of population differentiation for mtDNA suggests that it can be a powerful marker of population differences, but its rapid rate of structural evolution appears to result from recombination among a limited number of repetitive elements-giving frequent homoplasious fragment phenotypes. The phylogenetic trees disagreed with results from chloroplast DNA, nuclear gene, and morphological studies.  相似文献   

4.
J. Dong  D. B. Wagner 《Genetics》1994,136(3):1187-1194
We have surveyed a chloroplast DNA restriction fragment length polymorphism in 745 individuals, distributed rangewide in eight allopatric natural populations of jack pine (Pinus banksiana Lamb.) and eight allopatric natural populations of lodgepole pine (Pinus contorta Dougl.). The polymorphic region of the chloroplast genome is located near duplicated psbA genes. Fourteen length variants were found in the survey, and these variants distinguished the two species qualitatively. Variant diversities were high in both species (h(es) = 0.43 in jack pine; h(es) = 0.44 in lodgepole pine). Population subdivision was weak within and among lodgepole pine subspecies and in jack pine (i.e., θvalues were less than 0.05). This weak subdivision is compatible with theoretical predictions for paternally inherited markers in wind-pollinated outcrossers, as well as for polymorphisms with high length mutation rates. If these populations are at a drift-migration equilibrium, the chloroplast DNA restriction fragment data and previous mitochondrial frequency data from the same individuals are consistent with gene flow that is differential through seeds and pollen. The new data have permitted the first empirical tests of disequilibrium between maternally and paternally inherited factors. As expected, these tests failed to detect convincing evidence of non-random association between chloroplast and mitochondrial variants.  相似文献   

5.
We compared genetic diversity estimated from allozymes and from random amplified polymorphic DNA (RAPDs) in a sample of 210 Great Basin bristlecone pines (Pinus longaeva Bailey) from three groves in the White Mountains, California, USA. The White Mountains are the most westerly extension of bristlecone pine and home to the oldest known living trees. We assayed two forks of each tree to determine whether they originated from multiple seed caches of the Clark's nutcracker. Despite the limited and fragmented distribution of bristlecone pine, its level of genetic diversity was comparable to that of other pines, but lower than that reported for eastern populations of Great Basin bristlecone pine. Twenty-six of 36 allozymes were polymorphic (p(95) = 38.9%; p = 63.0%), with observed heterozygosity (H(o)) of 0.122 and expected heterozygosity (H(e)) of 0.134. The proportion of the total variation among populations (G(ST)) was only 0.011. The high proportion of trees with multiple stems was not due to germination in seed caches; only six of 210 forked trees had multiple allozyme genotypes. Of the 42 RAPD loci scored, 27 were monomorphic. Genetic diversity for RAPDs was nearly the same as that for allozymes (p(95) = 34.1%, H(e) = 0.130). However, the estimates of diversity and differentiation were much higher (H(e) = 0.321, G(ST) = 0.039) after excluding monomorphic loci.  相似文献   

6.
Anchored reference loci provide a framework for comparative mapping. They are landmarks to denote conserved chromosomal segments, allowing the synthesis of genetic maps from multiple sources. We evaluated 90 expressed sequence tag polymorphisms (ESTPs) from loblolly pine (Pinus taeda L.) for this function. Primer sets were assayed for amplification and polymorphism in six pedigrees, representing two subgenera of Pinus and a distant member of the Pinaceae, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). On average, 89% of primer sets amplified in four species of subgenus Pinus, 49% in one species of subgenus Strobus, and 22% in Douglas-fir. Polymorphisms were detected for 37-61% of the ESTPs within each pedigree. Comparative mapping in loblolly and slash pine (P. elliottii Englm.) revealed that ESTPs mapped to the same location. Disrupted synteny or significant disruptions in colinearity were not detected. Thirty-five ESTPs met criteria established for anchor loci. The majority of those that did not meet these criteria were excluded when map location was known in only a single species. Anchor loci provide a unifying tool for the community, facilitating the creation of a "generic" pine map and serving as a foundation for studies on genome organization and evolution.  相似文献   

7.
In the present study we investigated the genetic structure and genetic diversity of Pinus heldreichii populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. We were interested in addressing the following questions: (1) can population structuring in Bosnian pine be detected via chloroplast microsatellite markers; (2) are there differences in population differentiation as determined by terpenes and microsatellites; and (3) how are the patterns of size variant frequencies and geographical distances related. Four provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using 6 primer pairs. Between 2 and 5 size variants were identified at each locus. A total of 16 size variants at the 6 loci were identified, 4 occurring at low frequencies. They were combined in 21 different haplotypes including 11 that were unique. AMOVA analysis revealed that 18.25% of the variation was found among populations, while 81.75% was expressed within populations. The cpSSR analysis divided Bosnian pine populations into two groups, the first represented by populations B, C and D located in the south and north-western part of the Pirin and Slavianka mountains, while the second group, represented by population A, is located in the north-eastern Pirin mountain. Terpene analysis revealed that on average, 59% of the monoterpene pool in P. heldreichii is accounted for by limonene (range 36–48%) followed by α-pinene (range 16–17%). The presence of two distinct groups (Pop-A, Pop-D and Pop-B, Pop-C) is more consistent with physical distances between populations. No significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance determined by terpenes was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in Bosnian pine populations is the consequence of historical and biogeographical processes.  相似文献   

8.
Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity and structure among populations at 15 sites (e.g., provenances) across the native range of western white pine. The level of genetic diversity was different among 15 populations tested using 66 polymorphic AFLP loci. Nei’s gene diversity (H E) at the population level ranged from 0.187 to 0.316. Genetic differentiation (G ST) indicated that 20.1% of detected genetic variation was explained by differences among populations. In general, populations below 45oN latitude exhibited a higher level of genetic diversity than higher latitude populations. Genetic distance analysis revealed two major clades between northern and southern populations, but other well-supported relationships are also apparent within each of the two clades. The complex relationships among populations are likely derived from multiple factors including migration, adaptation, and multiple glacial refugia, especially in higher latitudes. Genetic diversity and structure revealed by this study will aid recognition and selection of western white pine populations for species management and conservation programs, especially in consideration of current and future climate changes.  相似文献   

9.
Random amplified polymorphic DNA markers were used to investigate genetic variation of the Chinese pine (Pinus tabulaeformis Carr.), a species endemic to China and the most widely distributed pine species in North China. The results revealed that P. tabulaeformis populations had a relatively high level of genetic diversity (H t = 0.3268), distributed mainly within (79.2%) rather than among (20.8%) populations. The populations of Lingkong Mountain and Wuling Mountain had a higher level of diversity (0.2687) than the other four populations (0.2537). No statistically significant relationships were found between genetic diversity and climatic factors by correlation analysis and between genetic distance and geographic distance by the Mantel test. These results suggest that the partitioning of genetic diversity in each population might have been influenced not only by water and temperature conditions but also by other factors such as human activities and the Holocene postglacial history of these populations.  相似文献   

10.
Aim  Native American fire use influenced bark thickness of coastal and island Monterey pine ( Pinus radiata D. Don) and bishop pine ( Pinus muricata D. Don) populations.
Methods  Basal bark thickness and d.b.h. were measured in two common-garden pine plantations that included all five native Monterey pine populations and nine of 10 native bishop pine populations. One-factor analysis of covariance was used to determine if significant differences in bark thickness existed between island and coastal populations.
Results  Bark thickness was measured on 228 Monterey and 42 bishop pines. Bark thickness in coastal and island Monterey pine populations was significantly different. Bark thickness in coastal and island bishop pine populations was not significantly different.
Main conclusions  Basal bark was thick in populations where there was a history of Native American burning. Basal bark was thin in two island populations where Native Americans have been absent or distant from the pine populations. While other influences no doubt affect the evolution of lower-bole bark thickness, it appears that frequent anthropogenic fires may be a powerful selection force.  相似文献   

11.
Aims Many pine populations in Canada have fragmented distributions resulting from the effects of glaciations, overharvesting and white pine blister rust infections. Forest fragmentation can modify gene flow and reduce genetic diversity. Selective logging can reduce the density of trees, thereby altering mating patterns and increasing inbreeding. The hypothesis of the present study is that forest fragmentation will not increase inbreeding and will have no effect on genetic diversity parameters in the Canadian Pinus moniticola and P. strobus populations targeted because of (i) the long life span of the pine species, (ii) outbreeding and self-incompatibility of P. monticola and P. strobus and (iii) wind pollination resulting in high gene flow among populations. We studied the genetic diversity of P. strobus across its range in Canada, and we completed a detailed analysis of the genetic structure of P. monticola populations from western Canada using microsatellites genetic markers.Methods Seed samples from 10 P. monticola populations and 10 P. strobus populations were collected from western and eastern Canada, respectively. The mother trees included in seed lots were representative of each stand. Genomic DNA extracted from each sample was amplified with microsatellite primers. The intra- and interpopulation genetic diversity parameters were assessed using Popgene and Genepop softwares and the genetic distances among populations within each species using the PowerMarker software.Important findings Pinus monticola and P. strobus exhibited moderate to high genetic diversity. Also, both species showed low levels of inbreeding despite the geographic isolation and small stand size. Gene flow estimates were high and population differentiation values were relatively low for these fragmented forest sites.  相似文献   

12.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

13.
Random Amplified Polymorphic DNA (RAPD) markers were used to measure genetic diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae), a genus endemic to the Juan Fernandez Islands, Chile. Results were compared to previous studies employing allozymes. For five of the species, RAPD banding patterns distinguished all individuals examined, and different mutilocus genotypes were found even in species exhibiting no allozyme diversity. RAPD band diversities ranged from 0.003 to 0.022 within species; >90% of total diversity was among species and <10% within them. Relative levels of allozyme and RAPD diversity were similar for some species, particularly those with highest and lowest diversities, but overall there was no significant correlation. Relationships inferred from a neighbor-joining tree generated from RAPD bands were similar to results obtained from morphology, chloroplast DNA (cpDNA) restriction site mutations, and sequences from the internal transcribed spacer regions of nuclear ribosomal DNA (ITS), but somewhat better resolution was achieved. Relationships shown by allozymes differed from trees based on other data; this ostensibly is a result of the sharing of ancestral alleles and the absence of alleles generated subsequent to speciation. Dendroseris represents an example where RAPD markers, because of their greater variability, provide a useful alternative to allozymes for assessing diversity in rare species endemic to oceanic islands and for resolving relationships among the species.  相似文献   

14.
Purified chloroplast DNA ( cp DNA) extracts from 31 species of Picea and two species of Pinus (P. sylvestris and P. cembra ) were digested with eight restriction endo-nucleases, separated by electrophoresis and scored for restriction fragment length polymorphisms. The resulting data was analyzed phenetically and cladistically. The phenetic analysis indicated lower levels of cpDNA differentiation within Picea than within Pinus and lower levels of differentiation among Eurasian than among North-American Picea species. The cladistic analysis, using Pinus sylvestris as an outgroup, suggested monophyly for Picea and resolved several monophyletic groups among the 31 species of Picea . An assessment of biogeographic events, based on the cladogram, suggests that Picea originated in North-America and that the colonization of Eurasia occurred through separate, intercontinental migrations.  相似文献   

15.
To make inferences about the glacial refugia that harboured the limber pine, Pinus flexilis James, we examined the range-wide population structure of mitochondrial DNA (mtDNA) with eight size variants in the second intron of nad1. The data consisted of haplotypes from 704 trees collected from 40 localities. The value of FST for these populations was 0.80, which is a much larger value than has been reported for allozymes and chloroplast DNA (cpDNA) in limber pine, and it suggests that the number of seeds moving among localities per generation is approximately 0.12. Gene flow of this magnitude would allow mutation and subsequent genetic drift to have a substantial impact on the population structure of mtDNA. The majority of the mtDNA haplotypes are restricted to minor portions of the geographical range. The data are consistent with mtDNA differentiation in seven glacial refugia, followed by dispersal out of those refugia.  相似文献   

16.
Restriction fragment length polymorphisms (RFLPs) were examined in 12 winter strains of the marine diatom Skeletonema costatum (Grev.) Cleve using homologous chloroplast gene probes. The winter strains included eight different allozyme genotypes exhibiting physiological differences. These 12 winter strains were representative of the least diverse genetic group present in Narragansett Bay populations. Five chloroplast DNA probes and four different restriction enzymes were used to analyze the 12 Narragansett Bay strains and a reference strain “Skel.” A total of 46 restriction fragments were identified. All 12 of the winter strains had identical patterns. Strain Skel exhibited two RFLPs in comparison to the Narragansett Bay strains. Calculated diversity within the winter strain group was 0.0 and 0.85 for the chloroplast DNA and allozyme data, respectively. The chloroplast DNA polymorphisms revealed by this study are expected to represent a minimum level of the chloroplast DNA diversity present in Narragansett Bay seasonal populations.  相似文献   

17.
Pinus flexilis (limber pine) is patchily distributed within its large geographic range; it is mainly restricted to high elevations in the Rocky Mountains and the Basin and Range region of western North America. We examined patterns of allozyme diversity in 30 populations from throughout the species' range. Overall genetic diversity (H(e) = 0.186) was high compared with that of most other pine species but was similar to that of other pines widespread in western North America. The proportion of genetic diversity occurring among populations (G(ST) = 0.101) was also high relative to that for other pines. Observed heterozygosity was less than expected in 28 of the 30 populations. When populations were grouped by region, there were notable differences. Those in the Basin and Range region had more genetic diversity within populations, a higher proportion of genetic diversity among populations, and higher levels of inbreeding within populations than populations from either the Northern or Utah Rocky Mountain regions. Patterns of genetic diversity in P. flexilis have likely resulted from a complex distribution of Pleistocene populations and subsequent gene flow via pollen and seed dispersal.  相似文献   

18.
Díaz V  Muñiz LM  Ferrer E 《Molecular ecology》2001,10(11):2593-2603
Pinus oocarpa is the most widely distributed pine species of Mexico and Central America. The natural populations of Nicaragua have been affected by extensive human activities. As a consequence, their size has been reduced, and there is a serious threat to the development of mature woodland. Knowledge of population structures and the genetic diversity of the species is required for the design of sustainable use and conservation strategies. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic variation among 10 populations from three geographical regions of Nicaragua. Both markers revealed high levels of diversity in these populations. G(ST) values and analyses of molecular variance (AMOVA) found that most variation was within populations but there is still a significant differentiation between populations indicating that the populations sampled cannot be considered a single panmictic unit. The partitions created by AMOVA also showed that there was little differentiation between populations of different regions, although cluster analyses based on RAPDs and AFLPs indicated a closer relationship among most of the populations from a same geographical region. Management of P. oocarpa in Nicaragua should be aimed to maintain the high degree of genetic variation within individual populations that is still observed even in some of these highly degraded populations.  相似文献   

19.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

20.
Pinus krempfii Lecomte is a morphologically and ecologically unique pine, endemic to Vietnam. It is regarded as vulnerable species with distribution limited to just two provinces: Khanh Hoa and Lam Dong. Although a few phylogenetic studies have included this species, almost nothing is known about its genetic features. In particular, there are no studies addressing the levels and patterns of genetic variation in natural populations of P. krempfii. In this study, we sampled 57 individuals from six natural populations of P. krempfii and analyzed their sequence variation in ten nuclear gene regions (approximately 9 kb) and 14 mitochondrial (mt) DNA regions (approximately 10 kb). We also analyzed variation at seven chloroplast (cp) microsatellite (SSR) loci. We found very low haplotype and nucleotide diversity at nuclear loci compared with other pine species. Furthermore, all investigated populations were monomorphic across all mitochondrial DNA (mtDNA) regions included in our study, which are polymorphic in other pine species. Population differentiation at nuclear loci was low (5.2%) but significant. However, structure analysis of nuclear loci did not detect genetically differentiated groups of populations. Approximate Bayesian computation (ABC) using nuclear sequence data and mismatch distribution analysis for cpSSR loci suggested recent expansion of the species. The implications of these findings for the management and conservation of P. krempfii genetic resources were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号