首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.  相似文献   

5.
《Experimental mycology》1990,14(4):405-415
The relationship between β-linked disaccharide (cellobiose, sophorose) utilization and cellulase, particularly cellobiohydrolase I (CBH I) synthesis by Trichoderma reesei, was investigated. During growth on cellobiose and sophorose as carbon sources in batch as well as resting-cell culture, only sophorose induced cellulase formation. In the latter experiments, sophorose was utilized at a much lower rate than cellobiose, and the more cellulase produced, the lower its rate of utilization. Cellobiose and sophorose were utilized by the fungus mainly via hydrolysis by the cell wall- and cell membrane-bound β-glucosidase. Addition of sophorose to T. reesei growing on cellulose did not further stimulate cellulase synthesis, and addition of cellobiose was inhibitory. Cellobiose, however, promoted cellulase formation in both batch and resting cell cultures, when its hydrolysis by β-glucosidase was inhibited by nojirimycin. No cellulase formation was observed when the uptake of glucose (produced from cellobiose by β-glucosidase) was inhibited by 3-O-methylglucoside. Cellodextrins (C2 to C6) promoted formation of low levels of cellobiohydrolase I in indirect proportion to their rate of hydrolysis by β-glucosidase. Studies on the uptake of [3H]cellobiose, [3H]sophorose, and [14C]glucose in the presence of inhibitors of β-glucosidase (nojirimycin) and glucose transport (3-O-methylglucoside) show that glucose transport occurs at a much higher rate than disaccharide hydrolysis. Extracellular disaccharide hydrolysis accounts for at least 95% of their metabolism. The presence of an uptake system for cellobiose was established by demonstrating the presence of intracellular labeled [3H]cellobiose in T. reesei after its extracellular supply. The data are consistent with induction of cellulase and particularly CBH I formation in T. reesei by β-linked disaccharides under conditions where their uptake is favored at the expense of extracellular hydrolysis.  相似文献   

6.
7.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   

8.
We constructed beta-glucosidase (BGL)-displaying Corynebacterium glutamicum, and direct l-lysine fermentation from cellobiose was demonstrated. After screening active BGLs, Sde1394, which is a BGL from Saccharophagus degradans, was successfully displayed on the C. glutamicum cell surface using porin as an anchor protein, and cellobiose was directly assimilated as a carbon source. The optical density at 600 nm of BGL-displaying C. glutamicum grown on cellobiose as a carbon source reached 23.5 after 48 h of cultivation, which was almost the same as that of glucose after 24 h of cultivation. Finally, Sde1394-displaying C. glutamicum produced 1.08 g/l of l-lysine from 20 g/l of cellobiose after 4 days of cultivation, which was about threefold higher than the amount of produced l-lysine using BGL-secretory C. glutamicum strains (0.38 g/l after 5 days of cultivation). This is the first report on amino acid production using cellobiose as a carbon source by BGL-expressing C. glutamicum.  相似文献   

9.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

10.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

11.
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.  相似文献   

12.
Original meiotic chromosome counts are presented for nine endemic species in seven families of Angiosperms from Iran including:Arum giganteum Ghahr. (Araceae) (n=14),Caccinia actinobole Bunge (Boraginaceae) (n=8),Delphinium aquilegifolium (Boiss.)Bornm. (Ranunculaceae) (n=8),Diplotaenia damavandica Mozaff., Hedge etLamond (Apiaceae) (n=11),Gypsophila caricifolia Boiss. (Caryophyllaceae) (n=17),Iphiona arachnoidea (Boiss.)Anderb. (Asteraceae) (n=9),Moltkia gypsacea Rech. f. etAellen (Boraginaceae) (n=20),Onobrychis gaubae Bornm. (Fabaceae) (n=8) andOnosma platyphyllum Riedl (Boraginaceae) (n=9). Eight counts are reported for the first time. Furthermore, the previous chromosome count forIphiona aracnoidea is corrected. Based on cytological data the species status ofMoltkia gypsacea is confirmed; it is not merely synonymous withM. coerulea (Willd.)Lehm. The basic chromosome number n=11 is reported in the genusDiplotaenia for the first time.  相似文献   

13.
14.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

15.
The genes encoding xylitol dehydrogenase (Texdh) and l-arabitol dehydrogenase (Telad) are involved in the fungal pentose pathway and were isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli, and the products purified to homogeneity. TeXDH showed activity toward xylitol and d-sorbitol. TeLAD was active with l-arabitol, xylitol, and d-sorbitol. Phylogenetic analysis showed TeLAD has evolved from d-sorbitol dehydrogenase as a result of environmental adaptation. Substrate specificity studies indicate that TeXDH is likely to have evolved from the more broadly acting TeLAD. Texdh and Telad expression was inducible by the same carbon sources responsible for induction of genes involved in biomass degradation, suggesting for the first time a coordinated regulatory control mechanism for expression of genes encoding extracellular hydrolases and intracellular metabolic genes in the pentose utilization pathways of T. emersonii. These data also suggest that TeXDH and TeLAD may be valuable in the production of xylitol, l-arabitol, and ethanol from renewable resources rich in pentose sugars.  相似文献   

16.
Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7 % based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, l-arabinose, mannose, l-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3 %, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8 %, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.  相似文献   

17.
《Anaerobe》1999,5(5):547-554
Scanning electron microscopy detected ultrastructural protuberances on the cellulolytic anaerobeEubacterium cellulosolvens . Such cell surface structures were found only when cells were cultivated in cellulose containing medium, suggesting these structures play a role in cellulose degradation. Organisms cultivated in medium containing cellobiose, glucose, fructose, maltose, or carboxymethylcellulose (CMC) contained few, if any, of these protuberances. Also, when a soluble carbohydrate or CMC was added to cellulose-grown cells, the ultrastructural protuberances were no longer detected. In fact, a time course study revealed that the loss of these protuberant structures occurred within 5 min of the addition of glucose, cellobiose, fructose, or a glucose analog to the medium. On the other hand, formation of these protuberances required at least 2 h, and 4 h before large numbers were present on the cells. Cellulose-grown cells also bound the FITC-labeled lectin BSI-B4, obtained from Bandeiraea (formerly Griffonia) simplicifolia. Less detectable levels of lectin were bound by cellobiose-grown cells, and glucose- and fructose-grown cells did not bind any detectable levels of the lectin. Moreover, the addition of glucose or 2-deoxyglucose to the medium of a cellulose-grown culture resulted in the loss of detectable lectin binding. A cellulose-affinity protein fraction, which contained cellulase activity, was also isolated from the cellular extracts of cellobiose- and cellulose-grown cultures of E. cellulosolvens. This affinity fraction could not be eluted from the cellulose column with either sodium dodecyl sulfate (SDS), urea, or a 2-M solution of NaCl, but was eluted by Tris buffer containing ethylenediaminetetraacetic acid (EDTA). The fraction possessed cellulase activity, and consisted of numerous polypeptides. However, this protein fraction could not be detected in the extract of glucose-grown cultures, or in the extract of cellulose-grown cultures within 5 min of the addition of glucose (or a glucose analog) to the medium. The immediate loss of the cellulose-affinity protein fraction and protuberant structures when a soluble carbohydrate was added to the medium indicated some, as yet unknown, regulatory mechanism.  相似文献   

18.
19.
The inhibitory effect ofd-glucosamine andd-galactosamine on the induction of competence inStreptococcus Wicky was detected. These sugars also inhibited the transformation inBacillus subtilis 168trp 2 ? . The same effect was observed inBacillus subtilis when usingN-acetyl-d-galactosamine.  相似文献   

20.
Xylose oligomers rapidly induced xylanase activity of Trichoderma longibrachiatum, whereas induction was delayed in the presence of glucose. Cellobiose, cellopentaose, and xylobiose did not induce detectable levels of cellulase activity. However, mixtures of xylobiose with cellobiose or cellopentaose rapidly induced cellulase activity. In addition, mixtures of xylobiose with cellopentaose or cellobiose induced xylanase activity more effectively than xylobiose alone. Both xylanase and cellulase activity were detected after a lag period in the presence of lactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号