首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action, observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometry of the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity.  相似文献   

2.
Wang S  Eisenberg D 《Biochemistry》2006,45(6):1554-1561
Pantothenate synthetase (PS) from Mycobacterium tuberculosis represents a potential target for antituberculosis drugs. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Previously, we determined the crystal structure of PS from M. tuberculosis and its complexes with AMPCPP, pantoate, and pantoyl adenylate. Here, we describe the crystal structure of this enzyme complexed with AMP and its last substrate, beta-alanine, and show that the phosphate group of AMP serves as an anchor for the binding of beta-alanine. This structure confirms that binding of beta-alanine in the active site cavity can occur only after formation of the pantoyl adenylate intermediate. A new crystal form was also obtained; it displays the flexible wall of the active site cavity in a conformation incapable of binding pantoate. Soaking of this crystal form with ATP and pantoate gives a fully occupied complex of PS with ATP. Crystal structures of these complexes with substrates, the reaction intermediate, and the reaction product AMP provide a step-by-step view of the PS-catalyzed reaction. A detailed reaction mechanism and its implications for inhibitor design are discussed.  相似文献   

3.
In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5’-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3’-phosphoadenosine-5’-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.  相似文献   

4.
Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a “backup” regulator of pathway flux relative to pantothenate kinase.  相似文献   

5.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

6.
Pantothenate biosynthesis is essential for the virulence of Mycobacterium tuberculosis, and this pathway thus presents potential drug targets against tuberculosis. We determined the crystal structure of pantothenate synthetase (PS) from M. tuberculosis, and its complexes with AMPCPP, pantoate, and a reaction intermediate, pantoyl adenylate, with resolutions from 1.6 to 2 A. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Its structure reveals a dimer, and each subunit has two domains with tight association between domains. The active-site cavity is on the N-terminal domain, partially covered by the C-terminal domain. One wall of the active site cavity is flexible, which allows the bulky AMPCPP to diffuse into the active site to nearly full occupancy when crystals are soaked in solutions containing AMPCPP. Crystal structures of the complexes with AMPCPP and pantoate indicate that the enzyme binds ATP and pantoate tightly in the active site, and brings the carboxyl oxygen of pantoate near the alpha-phosphorus atom of ATP for an in-line nucleophilic attack. When crystals were soaked with, or grown in the presence of, both ATP and pantoate, a reaction intermediate, pantoyl adenylate, is found in the active site. The flexible wall of the active site cavity becomes ordered when the intermediate is in the active site, thus protecting it from being hydrolyzed. Binding of beta-alanine can occur only after pantoyl adenylate is formed inside the active site cavity. The tight binding of the intermediate pantoyl adenylate suggests that nonreactive analogs of pantoyl adenylate may be inhibitors of the PS enzyme with high affinity and specificity.  相似文献   

7.
Pantothenate is the metabolic precursor of Coenzyme A, an indispensable cofactor for many fundamental cellular processes. In this study, we show that many bacterial species have acquired multiple copies of pantothenate biosynthesis pathway genes via horizontal and vertical gene transfer events. Some bacterial species were also found to lack panE and panD genes, and depended on alternative enzymes/metabolic sources for pantothenate production. To shed light on the factors responsible for such dynamic evolutionary selections, the structural and functional characteristics of P. aeruginosa ketopantoate reductase (KPR), an enzyme that catalyzes the rate-limiting step and also the most duplicated, was investigated. A comparative analysis of apo and NADP+ bound crystal structures of P. aeruginosa KPR with orthologs, revealed that the residues involved in the interaction with specific phosphate moiety of NADP+ are relatively less conserved, suggesting dynamic evolutionary trajectories in KPRs for redox cofactor selection. Our structural and biochemical data also show that the specific conformational changes mediated by NADPH binding facilitate the cooperative binding of ketopantoate. From drastically reduced catalytic activity for NADH catalyzed the reaction with significantly higher KM of ketopantoate, it appears that the binding of ketopantoate is allosterically regulated to confer redox cofactor specificity. Altogether, our results, in compliance with earlier studies, not only depict the role of lateral gene transfer events in many bacterial species for enhancing pantothenate production but also highlight the possible role of redox cofactor balance in the regulation of pantothenate biosynthesis pathways.  相似文献   

8.
Enzymes from the de novo purine biosynthetic pathway have been exploited for the development of anti-cancer drugs, and represent novel targets for anti-bacterial drug development. In Mycobacterium tuberculosis, the cause of tuberculosis, this pathway has been identified as essential for growth and survival. The structure of M. tuberculosis PurN (MtPurN) has been determined in complex with magnesium and iodide at 1.30 Å resolution, and with cofactor analogue, 5-methyltetrahydrofolate (5MTHF) at 2.2 Å resolution. The structure shows a Rossmann-type fold that is very similar to the known structures of the human and E. coli PurN proteins. In contrast, MtPurN forms a dimer that is quite different from that formed by the Escherichia coli PurN, and which suggests a mechanism whereby communication could take place between the two active sites. Differences are seen in two active site loops and in the binding mode of the 5MTHF cofactor analogue between the two MtPurN molecules of the dimer. A binding site for halide ions is found in the dimer interface, and bound magnesium and iodide ions in the active site suggest sites that might be exploited in potential drug discovery strategies.  相似文献   

9.
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.  相似文献   

10.
In this study, we screen three heterocyclic structures as potential inhibitors of UDP-galactopyranose mutase (UGM), an enzyme involved in the biosynthesis of the cell wall of Mycobacterium tuberculosis. In order to understand the binding mode, docking simulations are performed on the best inhibitors. Their activity on Mycobacterium tuberculosis is also evaluated. This study made it possible to highlight an “oxazepino-indole” structure as a new inhibitor of UGM and of M. tuberculosis growth in vitro.  相似文献   

11.
In efforts to develop new antitubercular agents, we report here the synthesis of a series of novel pyrrole hydrazine derivatives. The molecules were evaluated against inhibitors of InhA, which is one of the key enzymes involved in type II fatty acid biosynthetic pathway of the mycobacterial cell wall as well as inhibitors of Mycobacterium tuberculosis H37Rv. The binding mode of compounds at the active site of enoyl-ACP reductase was explored using the surflex-docking method. The model suggests one or two H-bonding interactions between the compounds and the InhA enzyme. Some compounds exhibited good activities against InhA in addition to promising activities against M. tuberculosis.  相似文献   

12.
Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.  相似文献   

13.
Uridine monophosphate (UMP) kinase is a conserved enzyme that catalyzes the ATP-driven conversion of uridylate monophosphate into uridylate diphosphate, an essential metabolic step. In prokaryotes, the enzyme exists as a homohexamer that is regulated by various metabolites. Whereas the enzymatic mechanism of UMP kinase (UK) is well-characterized, the molecular basis of its regulation remains poorly understood. Here we report the crystal structure of UK from Bacillus anthracis (BA1797) in complex with ATP at 2.82 Å resolution. It reveals that the cofactor, in addition to binding in the active sites, also interacts with separate binding pockets located near the center of the hexameric structure. The existence of such an allosteric binding site had been predicted by biochemical studies, but it was not identified in previous crystal structures of prokaryotic UKs. We show that this putative allosteric pocket is conserved across different bacterial species, suggesting that it is a feature common to bacterial UKs, and we present a structural model for the allosteric regulation of this enzyme.  相似文献   

14.
N‐Substituted pantothenamides are derivatives of pantothenate, the precursor in the biosynthesis of the essential metabolic cofactor coenzyme A (CoA). These compounds are substrates of pantothenate kinase (PanK) in the first step of CoA biosynthesis and possess antimicrobial activity against various pathogenic bacteria. Here we solved the crystal structure of the Klebsiella pneumoniae PanK (KpPanK) in complex with N‐pentylpantothenamide (N5‐Pan) to understand the molecular basis of its antimicrobial activity. The structure reveals a polar pocket interacting with the pantothenate moiety of N5‐Pan and an aromatic pocket loosely protecting the pentyl tail, suggesting that the introduction of an aromatic ring to a new pantothenamide may enhance the compound's affinity to KpPanK. To test this idea, we synthesized N‐pyridin‐3‐ylmethylpantothenamide (Np‐Pan) and solved its co‐crystal structure with KpPanK. The structure reveals two alternat conformations of the aromatic ring of Np‐Pan bound at the aromatic pocket, providing the basis for further improvement of pantothenamide binding to KpPanK. Proteins 2013; 81:1466–1472. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Homogeneous (according to disc gel electrophoresis data) ATP: D-pantothenate-4'-phosphotransferase (pantothenate kinase, EC 2.7.1.33) was obtained from rat liver cytosol of heterogeneous stock rats. The enzyme was purified 199-fold with a 9.3% yield. The enzyme was relatively unstable but retained its activity in the presence of 10% glycerol containing 5.10(-4) M ATP over 10 days at 4 degrees C. The pH optimum was 6.5; the apparent Km values were equal to 1.2 X 10(-5) M and 1.4 X 10(-3) M for pantothenate and ATP, respectively, at the ATP/Mg2+ ratio of 1. Pantetheine produced a competitive inhibition of pantothenate kinase. Pantethine or pantetheine disulfide did not inhibit the enzyme.  相似文献   

16.
Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.  相似文献   

17.
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an “open” conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.  相似文献   

18.
Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their resistance pattern. This work highlights the potential value ion channel blockers as adjuvants of tuberculosis chemotherapy, in particular for the development of new therapeutic strategies, with strong potential for treatment shortening against drug susceptible and resistant forms of tuberculosis. Medicinal chemistry studies are now needed to improve the properties of these compounds, increasing their M. tuberculosis efflux-inhibition and killing-enhancement activity and reduce their toxicity for humans, therefore optimizing their potential for clinical usage.  相似文献   

19.
A great challenge is posed to the treatment of tuberculosis due to the evolution of multidrug-resistant (MDR) and extensively drugresistant (XDR) strains of Mycobacterium tuberculosis in recent times. The complex cell envelope of the bacterium contains unusual structures of lipids which protects the bacterium from host enzymes and escape immune response. To overcome the drug resistance, targeting “drug targets” which have a critical role in growth and virulence factor is a novel approach for better tuberculosis treatment. The enzyme Phosphopantetheinyl transferase (PptT) is an attractive drug target as it is primarily involved in post translational modification of various types-I polyketide synthases and assembly of mycobactin, which is required for lipid virulence factors. Our in silico studies reported that the structural model of M.tuberculosis PptT characterizes the structure-function activity. The refinement of the model was carried out with molecular dynamics simulations and was analyzed with root mean square deviation (RMSD), and radius of gyration (Rg). This confirmed the structural behavior of PptT in dynamic system. Molecular docking with substrate coenzyme A (CoA) identified the binding pocket and key residues His93, Asp114 and Arg169 involved in PptT-CoA binding. In conclusion, our results show that the M.tuberculosis PptT model and critical CoA binding pocket initiate the inhibitor design of PptT towards tuberculosis treatment.  相似文献   

20.
Virtual screening of a library of commercially available compounds versus the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a Ki of 70 μM. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (Ki 38 μM). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve π–π stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号