首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

2.
Coat proteins (CPs) of plant viruses are involved in different stages of the viral life cycle such as virion assembly, replication, movement, vector transmission, and regulation of host defense responses. Here, we report that the CPs of two filamentous RNA viruses, potato virus X (PVX, Potexvirus) and potato virus A (PVA, Potyvirus) exhibit an enzyme activity. The CP isolated from PVX virions possesses ATP-binding and ATPase activities. Recombinant PVX and PVA CPs produced in Escherichia coli show Mg2+-dependent ATPase and UTPase activities inhibited by antibodies against virus particles. Deletion of the C-terminal regions of these proteins diminishes their ATPase activity.  相似文献   

3.
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.  相似文献   

4.
Plant virus transport: motions of functional equivalence   总被引:1,自引:0,他引:1  
Plant virus cell-to-cell movement and subsequent systemic transport are governed by a series of mechanisms involving various virus and plant factors. Specialized virus encoded movement proteins (MPs) control the cell-to-cell transport of viral nucleoprotein complexes through plasmodesmata. MPs of different viruses have diverse properties and each interacts with specific host factors that also have a range of functions. Most viruses are then transported via the phloem as either nucleoprotein complexes or virions, with contributions from host and virus proteins. Some virus proteins contribute to the establishment and maintenance of systemic infection by inhibiting RNA silencing-mediated degradation of viral RNA. In spite of all the different movement strategies and the viral and host components, there are possible functional commonalities in virus-host interactions that govern viral spread through plants.  相似文献   

5.
Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway.Following virus entry and replication, successful infection of a host requires viral spread to distal parts of the organism through the vascular tissue. In plants, virus movement involves mostly symplastic trafficking of different viral components through the connections of plasmodesmata (PD) (13). With this aim, plant viruses encode one or more movement proteins (MPs), which allow viral genomes to cross the host cell wall by altering the size exclusion limit (SEL) or the structure of PD (6, 11). Plant viruses have evolved distinct mechanisms to move their genomes within the host. These mechanisms can be grouped into two general strategies: one in which the genome is transported in the form of a nucleoprotein complex (NPC) and another in which nucleic acids are encapsidated and move as virus particles. In both cases, besides altering PD SEL, MPs are involved either in NPC assembly or in forming tubules traversing modified PD and helping transport of either NPC or virions to the neighboring cell. Within these two major strategies, there exists a wide range of variability in terms of the number and type of viral and host proteins helping MPs to mediate virus spread within the host (11).In spite of such variability, several different MPs have been classified into a 30K superfamily; these MPs, from 20 genera including both RNA and DNA genome viruses, are structurally related to the 30-kDa MP of Tobacco mosaic virus (TMV), independent of the movement strategy followed (14). Members of this family have a common core of predicted secondary structure elements (α-helices and β-elements) containing a nucleic acid binding domain. Distinct MPs belong to this family, including several tubule-forming MPs, although these are phylogenetically separated from the other members (14). Thus, 30K superfamily MPs are closely related, and some of them are functionally interchangeable in the viral context (2, 20). In particular, MPs from five distinct genera with an RNA genome can successfully replace the corresponding gene of Alfalfa mosaic virus (AMV) (19), indicating that one or more basic and fundamental movement properties might be associated with the common 30K structural core.Among all known plant viruses, only three viral families have evolved a DNA genome: Geminiviridae, Caulimoviridae, and Nanoviridae (6). One possible explanation for this restriction is that endogenous cell-to-cell transport via PD is specialized to use RNA as the communication and signaling molecule (12). To circumvent this restriction, and to allow the efficient exploitation of endogenous transport machineries, DNA genome viruses have evolved appropriate mechanisms involving their MPs. Interestingly, Begomovirus and Caulimovirus MPs also belong to the 30K superfamily discussed above (14). The MP encoded by Cauliflower mosaic virus (CaMV), the type member of Caulimoviridae, forms tubules that guide the movement of encapsidated virus via an indirect MP-virion interaction (16, 21), whereas geminivirus MPs selectively bind their genomes and transport them as NPCs (6, 9, 17). In this study, we investigated the evolutionary convergence of MPs encoded by DNA and RNA viruses by testing their exchangeability in the viral context.  相似文献   

6.
Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.  相似文献   

7.
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.Plant viruses encode movement proteins (MPs) that mediate the intra- and intercellular spread of the viral genome via plasmodesmata, membranous channels that traverse the walls of plant cells and enable intercellular transport and communication. There is a range of diversity in the number and type of viral proteins required for viral movement (21). Research on tobacco mosaic virus (TMV) has played a leading role in understanding MP activity (2). The genome of TMV encodes a single 30-kDa multidomain protein, the namesake of the 30K superfamily (7). Viral RNA is associated with the membrane of the endoplasmic reticulum (ER) and microtubules in the presence of this MP (23, 30).A large number of plant viruses have 30K MPs, which share common abilities, including binding nucleic acids, localizing and increasing the size exclusion limit of plasmodesmata, and interacting with the ER membrane. A topological model has been proposed in which the TMV MP has two putative transmembrane (TM) helices, both the N and C termini oriented toward the cytoplasm, and a short loop exposed in the ER lumen (4). There is less experimental information for other 30K MPs, but they are likely to have some membrane interaction.Direct experimental evidence of the integration of MPs into the membrane has been obtained only for small hydrophobic MPs that do not belong to the 30K superfamily. There are two TM segments in the p9 protein of carnation mottle virus (41), whereas the p6 protein of beet yellow virus (29) and the p7B protein of melon necrotic spot virus (22) have a single TM segment. In viruses with genomes that include three partially overlapping open reading frames, termed the triple-gene block (TGB), all three TGB proteins are required for movement where the two smaller proteins, TGBp2 and TGBp3, are also TM proteins (24). Furthermore, cross-linking experiments with carnation mottle virus p9 protein demonstrated that its membrane insertion occurs cotranslationally in a signal recognition particle-dependent manner and throughout the cellular membrane integration components, the translocon (33, 34).Prunus necrotic ringspot virus (PNRSV) is a tripartite, positive-strand RNA virus in the genus Ilarvirus of the family Bromoviridae. RNAs 1 and 2 encode the polymerase proteins P1 and P2, respectively. RNA 3 is translated into a single 30K-type MP. The coat protein is translated from a subgenomic RNA 4 produced during virus replication.The present study tackled the association of the PNRSV MP with biological membranes. The in vitro translation of model integral membrane protein constructs in the presence of microsomal membranes demonstrated that the hydrophobic region (HR) of the PNRSV MP did not span the membranes. Different biochemical and biophysical experiments suggested that the protein is tightly associated with, but does not traverse, the membrane, leaving both its N- and C-terminal hydrophilic regions facing the cytosol. Finally, a mutational analysis of the HR revealed that both the helicity and hydrophobicity of the region are essential for viral cell-to-cell movement.  相似文献   

8.
Influenza viruses have a segmented viral RNA (vRNA) genome, which is replicated by the viral RNA-dependent RNA polymerase (RNAP). Replication initiates on the vRNA 3′ terminus, producing a complementary RNA (cRNA) intermediate, which serves as a template for the synthesis of new vRNA. RNAP structures show the 3′ terminus of the vRNA template in a pre-initiation state, bound on the surface of the RNAP rather than in the active site; no information is available on 3′ cRNA binding. Here, we have used single-molecule Förster resonance energy transfer (smFRET) to probe the viral RNA conformations that occur during RNAP binding and initial replication. We show that even in the absence of nucleotides, the RNAP-bound 3′ termini of both vRNA and cRNA exist in two conformations, corresponding to the pre-initiation state and an initiation conformation in which the 3′ terminus of the viral RNA is in the RNAP active site. Nucleotide addition stabilises the 3′ vRNA in the active site and results in unwinding of the duplexed region of the promoter. Our data provide insights into the dynamic motions of RNA that occur during initial influenza replication and has implications for our understanding of the replication mechanisms of similar pathogenic viruses.  相似文献   

9.
Plant viruses spread cell-to-cell by exploiting and modifying plasmodesmata, coaxial membranous channels that cross cell walls and interlink the cytoplasm, endoplasmic reticulum and plasma-membranes of contiguous cells. To facilitate viral spread, viruses encode for one or more movement proteins that interact with ER and ER derived membranes, bind vRNA and target to Pd. Mounting evidence suggests that RNA viruses that do not spread as virions employ the same basic mechanism to facilitate cell-to-cell spread. In light of the research reviewed here, we propose a general functional model for the cell-to-cell spread of these viruses. This model posits that MPs have multiple functions: one function involves directing virus induced β-1,3-glucanases which accumulate in ER derived vesicles to the cell wall to hydrolyze Pd associated callose in order to gate open the Pd; independently, the MPs form ER-associated protein rafts which transport bound vRNA by diffusion along ER to adjacent cells via the ER component of the plasmodesmata. The driving force for spread is the diffusion gradient between infected and non-infected adjacent cells.  相似文献   

10.
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.  相似文献   

11.
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.  相似文献   

12.
It is generally accepted that in order to establish a systemic infection in a plant, viruses move from the initially infected cell to the vascular tissues by cell-to-cell movement through plasmodesmata (PD), and load into the vascular conducting tubes (i.e. phloem sieve elements and xylem vessel elements) for long-distance movement. The viral unit in these movements can be a virion or a yet-to-be-defined ribonucleic protein (RNP) complex. Using live-cell imaging, our laboratory has previously demonstrated that membrane-bound replication complexes move cell-to-cell during turnip mosaic virus (TuMV) infection. Our recent study shows that these membrane-bound replication complexes end up in the vascular conducting tubes, which is likely the case for potato virus X (PVX) also. The presence of TuMV-induced membrane complexes in xylem vessels suggests that viral components could also be found in other apoplastic regions of the plant, such as the intercellular space. This possibility may have implications regarding how we approach the study of plant innate immune responses against viruses.  相似文献   

13.
14.
The cell-to-cell movement of Potato virus X (PVX) requires four virus-encoded proteins, the triple gene block (TGB) proteins (TGB25K, TGB12K, and TGB8K) and the coat protein. TGB12K increases the plasmodesmal size exclusion limit (SEL) and may, therefore, interact directly with components of the cell wall or with plant proteins associated with bringing about this change. A yeast two-hybrid screen using TGB12K as bait identified three TGB12K-interacting proteins (TIP1, TIP2, and TIP3). All three TIPs interacted specifically with TGB12K but not with TGB25K or TGB8K. Similarly, all three TIPs interacted with beta-1,3-glucanase, the enzyme that may regulate plasmodesmal SEL through callose degradation. Sequence analyses revealed that the TIPs encode very similar proteins and that TIP1 corresponds to the tobacco ankyrin repeat-containing protein HBP1. A TIP1::GFP fusion protein localized to the cytoplasm. Coexpression of this fusion protein with TGB12K induced cellular changes manifested as deposits of additional cytoplasm at the cell periphery. This work reports a direct link between a viral movement protein required to increase plasmodesmal SEL and a host factor that has been implicated as a key regulator of plasmodesmal SEL. We propose that the TIPs are susceptibility factors that modulate the plasmodesmal SEL.  相似文献   

15.
For many viruses, RNA is the holder of genetic information and serves as the template for both replication and translation. While host and viral proteins play important roles in viral decision‐making, the extent to which viral RNA (vRNA) actively participates in translation and replication might be surprising. Here, the focus is on flaviviruses, which include common human scourges such as dengue, West Nile, and Zika viruses, from an RNA‐centric viewpoint. In reviewing more recent findings, an attempt is made to fill knowledge gaps and revisit some canonical views of vRNA structures involved in replication. In particular, alternative views are offered on the nature of the flaviviral promoter and genome cyclization, and the feasibility of refining in vitro‐derived models with modern RNA probing and sequencing methods is pointed out. By tracing vRNA structures from translation through encapsidation, a dynamic molecule closely involved in the self‐regulation of viral replication is revealed.  相似文献   

16.
Cho SY  Cho WK  Kim KH 《Molecules and cells》2012,33(4):379-384
Potato virus X (PVX) contains five viral proteins as well as cis-acting elements like stem-loop 1 (SL1) RNAs at the 5′ region. SL1 RNAs are involved in PVX RNA replication, encapsidation, translation, and cell-to-cell movement. In this study, we performed two-dimensional electrophoresis Northwestern blot analysis and matrix-assisted laser desorption ionization time of flight mass spectrometry and identified 24 tobacco proteins that interact with SL1 RNAs. Interestingly, one-third of the identified host proteins have been shown to interact with many plant viral proteins. In addition, we demonstrated that PVX capsid protein can bind to both SL1(+/−) RNAs. We further selected three Nicotiana benthamiana proteins including NbMPB2Cb, NbMBF1, and NbCPIP2a, to confirm results of Northwestern blot analysis. Electrophoretic mobility shift assay showed that NbMPB2Cb and NbMBF1 bind to both SL1(+/−) RNAs in vitro. In contrast, NbCPIP2a interacts only SL1(+) RNA. Taken together, we provide a list of host proteins interacting with PVX SL1 RNAs, which would be good candidates for the study of viral RNA-host protein interaction.  相似文献   

17.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

18.
Members of the plant Dicer‐like (DCL) protein family are the critical components of the RNA‐silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non‐host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX‐GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.  相似文献   

19.
Summary The relationships of genome organization among elongated (rod-shaped and filamentous) plant viruses have been analyzed. Sequences in coding and noncoding regions of barley stripe mosaic virus (BSMV) RNAs 1, 2, and 3 were compared with those of the monopartite RNA genomes of potato virus X (PVX), white clover mosaic virus (WClMV), and tobacco mosaic virus, the bipartite genome of tobacco rattle virus (TRV), the quadripartite genome of beet necrotic yellow vein virus (BNYVV), and icosahedral tricornaviruses. These plant viruses belong to a supergroup having 5-capped genomic RNAs. The results suggest that the genomic elements in each BSMV RNA are phylogenetically related to those of different plant RNA viruses. RNA 1 resembles the corresponding RNA 1 of tricornaviruses. The putative proteins encoded in BSMV RNA 2 are related to the products of BNYVV RNA 2, PVX RNA, and WClMV RNA. Amino acid sequence comparisons suggest that BSMV RNA 3 resembles TRV RNA 1. Also, it can be proposed that in the case of monopartite genomes, as a rule, every gene or block of genes retains phylogenetic relationships that are independent of adjacent genomic elements of the same RNA. Such differential evolution of individual elements of one and the same viral genome implies a prominent role for gene reassortment in the formation of viral genetic systems.  相似文献   

20.
Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)‐labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3‐virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co‐injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell‐to‐cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3‐vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin‐dependent RNA movement. The 5′ methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5′ cap failed to form granules and was degraded in the cytoplasm. Removal of the 3′ untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual‐labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER‐bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号