首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
A feeding station is the area of forage a grazing animal can reach without moving its forefeet. Grazing behavior can be divided into residence within feeding stations (with bites as benefits) and movement between feeding stations (with steps as costs). However, relatively little information has been reported on how grazing animals modify their feeding station behavior seasonally and interannually in response to varying environmental conditions. The feeding station behavior of beef cows (Japanese Black) stocked on a tropical grass pasture (bahiagrass dominant) was monitored for 4 years (2010 to 2013) in order to investigate the association of feeding station behavior with meteorological and sward conditions across the seasons and years. Mean air temperature during stocking often exceeded 30°C during summer months. A severe summer drought in 2013 decreased herbage mass and sward height of the pasture and increased nitrogen concentration of herbage from summer to autumn. A markedly high feeding station number per unit foraging time, low bite numbers per feeding station and a low bite rate were observed in summer 2013 compared with the other seasons and years. Bite number per feeding station was explained by a multiple regression equation, where sward height and dry matter digestibility of herbage had a positive effect, whereas air temperature during stocking had a negative effect (R2=0.658, P<0.01). Feeding station number per minute was negatively correlated with bite number per feeding station (r=–0.838, P<0.001). It was interpreted that cows modified bite number per feeding station in response to the sward and meteorological conditions, and this largely determined the number of feeding stations the animals visited per minute. The results indicate potential value of bite number per feeding station as an indicator of daily intake in grazing animals, and an opportunity for livestock and pasture managers to control feeding station behavior of animals through managements (e.g. fertilizer application, manipulation of stocking intensity and stocking time within the day).  相似文献   

2.
Summary We studied factors which may shape giving-up decisions of wapiti grazing grassland patches (area where a wapiti initiates and terminates a feeding sequence) and feeding stations (area within a patch that a wapiti can reach without moving its forelegs). In grassland patches, cropping rate decreased after a critical period, whereas at feeding stations cropping rate increased with cumulative bites consumed. The number of feeding stations grazed, number of bites taken and grazing time did not dictate the termination of grazing in a patch. Wapiti gave up a patch only after the cropping rate at a feeding station dropped below the seasonal expectation during trials on lush pasture in May, but gave up after the cropping rate dropped below the seasonal expectation at two consecutive feeding stations in March/April and August when foraging conditions were less favourable. This confirmed a prediction of the marginal value theorem. Wapiti did not give up a feeding station according to bites taken, grazing time or cropping rate, but they left feeding stations when their lateral neck angle reached a critical point suggesting a biokinetic explanation. Leaving feeding stations when ungrazed forage can no longer be reached and patches when intake rate drops both appeared to be rules used by wapiti grazing grasslands of the boreal mixed wood forest.  相似文献   

3.
The technique of grazing cut sods was used in combination with sound and video recording to examine the feasibility of using small-scale depletion curves derived from stall trials to estimate forage intake of cattle at the pasture. Setaria lutescens sods were grazed for a variable number of bites to generate patch depletion curves. Depletion curves characterize forage intake as a function of the number of bites taken at a single feeding station. Thus, the method agrees with a hierarchical approach to foraging and it could be used as a basis for scaling up food intake measurements to larger spatial scales. Two sod experiments were carried out, with the second experiment as a validation for predictions of intake. A field experiment was carried out to validate the predictions from the sod experiments with respect to both the amount and the rate of intake. Bite weight was largely determined by initial sward height and depletion level. Cumulative dry matter intake from the sods was well described by a rectangular hyperbola including the variables of number of bites and sward height. Bulk density added little to the explained variation, but was an important factor to account for the dry matter intake on short, dense sods from the second experiment. Feeding time could be explained to a great extent by the number of bites and chews taken, both in the sod and in the field experiments. However, the animals were substantially faster when grazing in the field than on the sods due to a relatively smaller chewing effort. The estimate of bite weight in the field based on the sod depletion curves was validated by an independent estimate derived from the chew to bite ratio. Bite weight estimates that ignored feeding station depletion were significantly greater than the independent estimates. We conclude that the sod grazing technique is an adequate tool to investigate food intake and forage depletion by grazing. It shows promise as a tool to explicitly scale up of foraging behaviour from the level of the feeding station to that of larger patches.  相似文献   

4.
Many of the studies in Campos grasslands focus on management aspects such as the control of herbage allowance, and application of nutrients and/or overseeding with legumes. However, there is little literature on how the Campos grassland resource is utilised, especially regarding the grazing pattern and the relationship between pasture quantity and quality on daily grazing activities. The study of the ingestive behaviour in species-rich and heterogeneous native grasslands during daylight hours, and understanding how animals prioritise quality or quantity of intake in relation to pasture attributes, are important to comprehend the ingestive-digestive processes modulating the energy intake of animals and to achieve a better grazing management. Therefore, the objective was to describe and quantify the daily grazing behaviour of growing cattle grazing native pasture with different structures as a result of different management practices, and study the relationship of pasture attributes and intake through multivariate analysis. The study was carried out at the Faculty of Agronomy, Paysandú, Uruguay. Treatments were native grassland, overseeding with Trifolium pratense and Lotus tenuis + phosphorus, and native pasture + nitrogen-phosphorus. Grazing activities were discriminated into grazing, searching (defined when animals take 1–2 bites in one feeding station and then change to another feeding station and so on), ruminating and idling. The probability of time allocated to each activity was continuously measured during daylight hours (0700–1930) and was related to pasture structure and forage quality using regression tree models, while the bite rate was determined every 2 h. The diurnal pattern of growing cattle showed grazing and searching sessions, followed by ruminating and idling sessions. The length of sessions (as the probability of time allocated to each activity) varied throughout the day. The grazing probability was greater during afternoon than morning and midday (0.74 vs 0.45 vs 0.46, respectively), and it was associated with higher bite rate (34.2 bites/min). Regression tree models showed different grazing, searching and ruminating strategies according to pasture attributes. During the morning, animals modified grazing, searching, ruminating and idling strategies according to bite rate, crude protein in diet and herbage allowance. At midday, they only adjusted ruminating and idling, while during afternoon sessions, grazing activities were modified by pasture quantity attributes such as herbage mass and herbage allowance. By controlling the herbage allowance, herbage mass and pasture height, animals prioritise quality in the morning and quantity in the afternoon, integrating and modifying the grazing-searching and ruminating-idling pattern.  相似文献   

5.
Livestock grazing plays a significant role in maintaining grasslands and promoting animal production globally. To understand the livestock performance in sown pasture (SP) vs native pasture (NP) is important to ensure more effective grassland-livestock interactions with minimal environmental impact. A 2 (treatment) * 2 (period) Latin Square design experiment was conducted with 10 growing Hu sheep ♂ × thin-tailed Han sheep ♀ rams grazed perennially SP vs NP in an inland arid region of China. The objectives were to evaluate the effects of grazing management on nutrient digestibility, nitrogen (N) and energy utilisation and methane (CH4) emission. The N intake, N retained and energy intake (gross energy (GE), and digestible and metabolisable energy) of sheep grazing in SP were significantly increased compared with those grazing in NP. There were significant linear relationships between DM intake (DMI) (g/kg BW or g/kg BW0.75) or CH4 (g/kg BW or g/kg BW0.75) emissions and forage nutrient and GE concentrations within each grassland type. The linear regression analysis indicated that forage CP or ether extract concentration was a good predictor for DMI (g/kg BW or g/kg BW0.75) (R2 = 0.756 or 0.752), and CH4 emission could be predicted using forage nutrient and GE concentrations (R2 = 0.381–0.503). These results suggest that DMI and CH4 emissions per unit metabolic BW were accurately predicted by multiple-factor combinations of forage nutrients, including ether extract and CP paired with GE. The present output could provide useful information for the development of sustainable sheep grazing systems in the inland arid regions of the world.  相似文献   

6.
郑昊哲  张岩  张涛  樊庆山  侯扶江 《生态学报》2022,42(22):8994-9004
为探究草原植物物种多样性对家畜放牧行为的影响及其机制,在青藏高原高寒草甸开展藏系牧羊轮牧试验,调查植被物种多样性,观察藏系牧羊采食速率、觅食速率和采食时间,并计算藏系牧羊日采食量。结果表明:两年间,植物物种丰富度与藏系牧羊采食速率呈显著正相关关系(P<0.05);觅食速率、采食时间和日采食量对放牧率响应敏感(P<0.05),呈夏秋增冬春减的趋势。植物Shannon-Wiener指数与藏系牧羊的采食时间显著负相关(P<0.05);在暖季或8羊/hm2放牧率下植物Shannon-Wiener指数与藏系牧羊日采食量呈显著正相关(P<0.05)。Pilelou均匀度指数与藏系牧羊采食速率和采食时间显著负相关(P<0.05);在暖季或8羊/hm2放牧率下Pilelou均匀度指数与藏系牧羊日采食量呈显著负相关(P<0.05)。植物物种丰富度对藏系牧羊放牧行为贡献较大,且放牧藏系牧羊的采食速率和采食时间比觅食速率和日采食量对植物物种丰富度响应更敏感,以用植物物种丰富度为自变量可以更好预测藏系牧羊放牧行为。放牧管理通过影响植被物种多样性从而进一步影响了藏系牧羊放牧行为。放牧行为不仅是评价草地营养价值和家畜生产力的关键指标,也是草地健康管理的基础。因此,明确草原植物物种多样性-藏系牧羊放牧行为的互作机制有助于更好的提高藏系牧羊地生产力,维护草原生态健康。  相似文献   

7.
Supplementary feeding has a significant effect on the growth performance of grazing yaks. However, as far as is known, little information is available concerning how energy or protein feed supplementation affects the serum metabolome of grazing yaks during the warm season. We investigated the effects of supplementation with two different concentrates on the serum metabolome in grazing yaks using nuclear magnetic resonance spectroscopy in conjunction with multivariate data analysis. Twenty-four 2-year-old female yaks (133.04 ± 6.52 kg BW) were randomly divided into three groups and fed three different regimes (n = 8 per group): (1) grazing plus hull-less barley (HLB) supplementation, (2) grazing plus rapeseed meal (RSM) supplementation, and (3) grazing without supplementation. Both HLB and RSM supplementation significantly increased the average daily gain (ADG), and ADG under HLB supplementation was 11.9% higher (P < 0.05) than that of the RSM group. Supplementation markedly altered glucose, lipid, and protein metabolism, with the difference manifested as increased levels of some amino acids, acetyl-glycoproteins, low-density lipoproteins, and very low-density lipoproteins . Furthermore, the levels of 3-hydroxybutyrate, acetoacetate, and lactate metabolism were decreased. Serum metabolite changes in yaks in the HLB supplementation treatment differed from those in the RSM supplementation treatment; the difference was primarily manifested in lipid- and protein-related metabolites. We conclude that both the energy supplementation (HLB) and the protein supplementation (RSM) could remarkably promote the growth of yak heifers during the warm season, and the effect of energy supplementation was superior. Supplementary feeding changed the serum metabolite levels of yak heifers, indicating that such feeding could improve glucose's energy-supply efficiency and increase the metabolic intensity of lipids and proteins. Supplementation of yaks with HLB was more efficient in the promotion of yak glucose and protein anabolism compared to supplementation with RSM, while having a lesser effect on lipid metabolism.  相似文献   

8.
Foraging strategy of cattle in patchy grassland   总被引:2,自引:0,他引:2  
We tested several strategies of foraging that grazing herbivores may adopt in a patchy habitat in relation to energy intake. The patch selection of cattle was investigated in an Agrostis/Festuca grassland and in a Lolium grassland in 13 observation periods over 2 years. Both grasslands were stocked with five yearling steers. Bite counts were made on patches of different vegetation structure: short, tall and mature stemmy grass. Bite size of each patch category was determined by hand-plucking. Samples of patch types were analysed for organic matter digestibility, as a measure of energy content. There was a large seasonal variation in relative patch cover and in forage characteristics. However, the differences between patches in bite size, bite rate and digestibility were consistent over time. In short patches digestibility was high, bite size was low and bite rate was high compared to stemmy patches. In tall patches digestibility was only little lower than in short patches and bite size and bite rate were intermediate between short and stemmy patches. The steers selected the short and tall patches over the stemmy patches, despite a relatively low intake rate of digestible organic matter in the short patches. Four hypotheses on foraging strategy were examined to explain the allocation of time or bites between patches: random allocation according to bites, random allocation according to grazing time, matching of time in proportion to digestibility, and matching of time in proportion to intake rate of digestible organic matter. The observed distribution of bites and time between patches was significantly different from the predictions of the various hypotheses. Patch choice was better explained by a random allocation of grazing time than by a random allocation of bites. Matching for digestible organic matter intake rate yielded the worst predictions of patch selection. Matching for digestibility gave the best explanation of patch selection, but the improvement compared to a random allocation of grazing time was not significant. The significance of the contribution of digestibility to selection may have been confounded by the effect of increased selectivity within tall patches. Observed patch selection was considered in relation to the maximization of energy intake rate. The selectivity of cattle was not pronounced, but it was consistent with a principle of maximization of energy intake on a daily basis instead of a short-term basis. Selectivity appeared to be constrained by costs of searching for and discriminating between different forage resources. It is concluded that a flexible selection for short patches over tall patches and avoidance of stemmy patches provides a good approximation of energy intake maximization in a complex and changing environment.  相似文献   

9.

Background

Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions.

Methodology/Findings

We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands.

Conclusions

Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality only at the community level.  相似文献   

10.
A herd of 28–33 Japanese Black cows (Bos taurus) were allowed to graze on an experimental plot comprising monoculture swards of centipedegrass (Eremochloa ophiuroides) and bahiagrass (Paspalum notatum) (0.39 and 0.61 ha, respectively) for 3–5 days each month (from 0850 to 1600 hours) between May (late spring) and October (mid-autumn). On a monthly basis, the animals showed an increasing trend to select centipedegrass in preference to bahiagrass as the relative crude protein (CP) concentration of the former increased relative to the latter. On a daily basis, the animals showed a decreased selectivity for centipedegrass with the progression of grazing days, as centipedegrass sward lost both quantity and quality faster than bahiagrass sward under higher degrees of defoliation. Animals maintained similar bite rates on the two swards by modifying feeding station behavior as soon as they switched between the swards, i.e., they increased the number of bites per feeding station and decreased the number of feeding stations selected per unit grazing time soon after switching to centipedegrass, with the reverse process occurring soon after the switch to bahiagrass. The results show CP concentration to be a partial forage factor influencing animals’ choice between tropical grasses growing as patches. The results also demonstrate that animals have an ability to adapt their foraging behavior flexibly and rapidly to varying types of vegetation.  相似文献   

11.
Mountain areas boast high levels of biodiversity due to the wide variety in topography, climates and traditional land-use practices they embrace. Recent changes in the mountain agro-ecosystems of Europe have led to a decline in these traditional practices (above all grazing) and have had negative effects on biodiversity. In this study we evaluated the effects of grazing pressure on plant species diversity and also focused on the common and rare species diversity, forage quality and forage production in the Festuca airoides, Festuca eskia, Festuca gautieri, Festuca paniculata and Nardus stricta grassland communities. These analyses could be of great importance in identifying the pastoral management practices that are most consistent with the conservation of plant diversity in the Andorran subalpine and alpine grasslands. Data were collected at 113 sampling sites exposed to either high or low grazing pressures. In all, 222 vegetation line-transects were established from which samples were collected and analysed using the NIRS method. In addition the lignin, protein and fibre fractions were obtained in order to evaluate the quality of the forage. In the Andorran summer pastures, the Festuca gautieri calcareous grasslands had the greatest plant species diversity, while the Festuca eskia, Festuca airoides and Nardus stricta grasslands had the lowest plant species diversity and a lack of common species due to their less homogeneous spatial structure. The highest quality forage corresponds to the Festuca gautieri and Nardus stricta grasslands, while the Festuca eskia grasslands have the lowest quality forage. Although high grazing pressure can lead to greater species diversity, it also tends to diminish forage quality and/or energy content by increasing the lignin content. Thus, domestic livestock is a fundamental element in these grasslands and an increase in the grazing pressure of the different types of livestock (cattle, sheep and horses) is necessary since a more balanced distribution of grazers between the grassland types – rather than an increase in grazers – will not be sufficient to maintain plant biodiversity. Likewise, there is a need to re-establish the practice of transhumance, a traditional pastoral practice based on the movement of livestock between winter lowland pastures and upland summer pastures.  相似文献   

12.
An understanding of the processes involved in grazing behaviour is a prerequisite for the design of efficient grassland management systems. The purpose of managing the grazing process is to identify sward structures that can maximize animal forage daily intake and optimize grazing time. Our aim was to evaluate the effect of different grazing management strategies on foraging behaviour and herbage intake by sheep grazing Italian ryegrass under rotational stocking. The experiment was carried out in 2015 in southern Brazil. The experimental design was a randomized complete block with two grazing management strategies and four replicates. The grazing management treatments were a traditional rotational stocking (RT), with pre- and post-grazing sward heights of 25 and 5 cm, respectively, and a ‘Rotatinuous’ stocking (RN) with pre- and post-grazing sward heights of 18 and 11 cm, respectively. Male sheep with an average live weight of 32 ± 2.3 kg were used. As intended, the pre- and post-grazing sward heights were according to the treatments. The pre-grazing leaf/stem ratio of the Italian ryegrass pasture did not differ between treatments (P > 0.05) (~2.87), but the post-grazing leaf/stem ratio was greater (P < 0.001) in the RN than in the RT treatment (1.59 and 0.76, respectively). The percentage of the non-grazed area was greater (P < 0.01) in post-grazing for RN compared with RT treatment, with an average of 29.7% and 3.49%, respectively. Herbage nutritive value was greater for the RN than for the RT treatment, with greater CP and lower ADF and NDF contents. The total time spent grazing, ruminating and resting did not differ between treatments (P > 0.05), with averages of 439, 167 and 85 min, respectively. The bite rate, feeding stations per min and steps per min by sheep were greater (P < 0.05) in the RN than in the RT treatment. The grazing time per hour and the bite rate were greater (P < 0.05) in the afternoon than in the morning in both treatments. The daily herbage intake by sheep grazing Italian ryegrass was greater (P < 0.05) in the RN than in the RT treatment (843.7 and 707.8 g organic matter/sheep, respectively). Our study supports the idea that even though the grazing time was not affected by the grazing management strategies when the animal behaviour responses drive management targets, such as in ‘Rotatinuous’ stocking, the sheep herbage intake is maximized, and the grazing time is optimized.  相似文献   

13.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

14.
Some non-structural carbohydrates, especially starch, escape ruminal fermentation, are converted into glucose, and are absorbed from the small intestine. This glucose provides an important source of energy, and its usage is more efficient than glucose from carbohydrates which are fermented as short chain fatty acids in the rumen and, subsequently, undergo hepatic gluconeogenesis. Tibetan sheep graze on the harsh Qinghai-Tibetan Plateau (QTP) all year round and their carbohydrate and energy intakes fluctuate greatly with seasonal forage availability. Consequently, a high capacity to absorb glucose from the small intestine would be particularly beneficial for Tibetan sheep to allow them to cope with the inconsistent dietary intakes. This study examined how the small intestinal morphology and sugar transporters’ expression of Tibetan and Small-tailed Han (Han) sheep respond to fluctuating energy intakes under the harsh conditions of the QTP. Han sheep graze on the QTP only in summer and are generally raised in feedlots. Twenty-four Tibetan sheep and 24 Han sheep, all wethers, were assigned randomly to four groups (n = 6 per breed/group), with each group offered a diet differing in digestible energy content: 8.21, 9.33, 10.45 and 11.57 MJ/kg DM. After 49 d, all sheep were slaughtered, tissues of the small intestine were collected, and measurements were made of the morphology and glucose transporters and the related regulation gene expressions. At intakes of low energy levels, Tibetan sheep had a greater villus surface area in the duodenum, jejunum and ileum and higher mRNA expression of sodium-dependent glucose transporter 1 in the duodenum and ileum (P < 0.05) than Han sheep. In the glucose transporter 2 (GLUT2) mediated glucose absorption pathway, Tibetan sheep had higher GLUT2 and taste receptor family 1 member 2 and 3 mRNA expressions than Han sheep in the duodenum, jejunum and ileum (P < 0.05). We concluded that the differences between breeds indicated a greater glucose absorption capacity in the small intestine of Tibetan than Han sheep, which would confer an advantage to Tibetan over Han sheep to an inconsistent energy intake on the harsh QTP. These findings suggested that ruminants raised under harsh environmental conditions with highly fluctuating dietary intakes, as is often the case in grazing ruminants worldwide, are able to absorb glucose from the small intestine to a greater extent than ruminants raised under more moderate conditions.  相似文献   

15.
任强  艾鷖  胡健  田黎明  陈仕勇  泽让东科 《生态学报》2021,41(17):6862-6870
放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm2、中牧:2头/hm2和重牧:3头/hm2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强度均无显著性响应;土壤全氮和pH的响应主要在表层0-20 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。  相似文献   

16.
The importance of scale of patchiness for selectivity in grazing herbivores   总被引:7,自引:0,他引:7  
The notion that spatial scale is an important determinant of foraging selectivity and habitat utilization has only recently been recognized. We predicted and tested the effects of scale of patchiness on movements and selectivity of a large grazer in a controlled field experiment. We created random mosaics of short/high-quality and tall/low-quality grass patches in equal proportion at grid sizes of 2×2 m and 5×5 m. Subsequently, we monitored the foraging behaviour of four steers in 16 20×40 m plots over 30-min periods. As predicted on the basis of nutrient intake maximization, the animals selected the short patches, both by walking in a non-random manner and by additional selectivity for feeding stations. The tortuosity of foraging paths was similar at both scales of patchiness but selectivity was more pronounced in large patches than in small ones. In contrast, the number of bites per feeding station was not affected by patch size, suggesting that selection between and within feeding stations are essentially different processes. Mean residence time at individual feeding stations could not be successfully predicted on the basis of the marginal-value theorem: the animals stayed longer than expected, especially in the less profitable patch type. The distribution of the number of bites per feeding station suggests a constant probability to stay to feed or to move on to the next feeding station. This implies that the animals do not treat larger patches as discrete feeding stations but rather as a continuous resource. Our results have important implications for the application of optimal foraging theory in patchy environments. We conclude that selectivity in grazers is facilitated by large-scale heterogeneity, particularly by enhancing discrimination between feeding stations and larger selection units. Received: 1 March 1999 / Accepted: 14 July 1999  相似文献   

17.
The effect of physiological state lactating vs. non-lactating (dry) on grazing behaviour and herbage intake by Holstein-Friesian cows was examined on grass pastures maintained at 5, 7 or 9 cm sward surface height (SSH), typical of those provided under continuous variable stocking management. Intake rates were estimated over periods of 1 h by weighing the animals before and after grazing, retaining the faeces and urine excreted, and applying a correction for insensible weight loss. Grazing behaviour during these periods and over 24 h was recorded automatically using sensors to measure jaw movements. Bite mass (BM) did not differ significantly between lactating and dry cows but decreased (P<0.001) from 0.42 to 0.30 g organic matter (OM) bite−1 as overall mean SSH decreased from 9 to 5 cm. An increase (P=0.040) in grazing jaw movement (GJM) rate, from 75.3 to 80.3 GJM min−1, as SSH decreased, did not compensate for reductions in bite mass, and intake rate declined linearly (P=0.006) from 24.6 to 18.9 g OM min−1. Lactating and dry cows compensated for the reduction in intake rate, by increasing total grazing time and total number of bites per day. As SSH decreased from 9 to 5 cm, lactating and dry cows increased total eating time (528 to 607 and 419 to 510 min), total GJM (40 400 to 49 300 and 31 300 to 40 600 GJM) and total bites (31 100 to 37 900 and 24 600 to 31 200 bites, respectively). As a result, there was no significant effect of SSH on daily intake of OM, although lactating cows had greater intakes than dry cows; 12.9 vs. 9.3 kg day−1, (P<0.001). The increased time spent grazing as SSH decreased was associated with a reduction in the time spent ruminating (P<0.001), despite similar levels of daily intake being achieved across SSH treatments. Although dry cows had much lower daily intakes, they spent only about 30 min less each day ruminating than the lactating cows (P=0.060), allowing them 120 to 160 min more idling (i.e., non-grazing, non-ruminating) behaviour (P=0.001).  相似文献   

18.
Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers) and Ovis aries (ewes) grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.  相似文献   

19.
Can grazing sheep compensate for a daily foraging time constraint?   总被引:3,自引:0,他引:3  
1. Theoretical studies of large herbivore foraging assume that total daily grazing time is a key constraint on daily intake and diet choice. We experimentally tested this assumption and investigated the effects of food availability on the ability of grazing sheep to compensate for restriction of available daily grazing time.
2. Foraging behaviour, intake and diet digestibility by sheep, were measured on grass pastures in a replicated 2 × 2 factorial experiment, in which overnight access to pasture was varied (restricted overnight and continuous access) on two sward heights (5·5 and 3·0 cm), representing high and low food availability.
3. Regardless of food availability, the overnight-restricted sheep fed for almost all of the available grazing time by grazing for fewer, longer foraging bouts, but still had much shorter total daily grazing time than the continuous access sheep.
4. In response to overnight penning, the sheep had a significantly higher instantaneous rate of intake achieved mainly via larger bites. The continuous access sheep were hence not maximizing their short-term rate of intake, whilst grazing according to the daily schedule considered normal for sheep.
5. The behavioural responses to overnight food restriction were able to counteract the reduction in daily grazing time only where food availability was high. In contrast on short swards overnight grazing restriction led to a reduction in total daily intake. We suggest that the interactions between the factors considered as constraints on foraging behaviour of herbivores are, as yet, only poorly quantified.  相似文献   

20.

Aims

By analysing cattle- and sheep-grazed sand grasslands, we tested the following hypotheses: (i) livestock type has a stronger effect on the vegetation characteristics than grazing intensity; (ii) sheep grazing results in lower biomass and species and functional diversity than cattle grazing, regardless of intensity; and (iii) increased grazing intensity causes a shift of the trait composition in grasslands.

Location

Sand grasslands in the Nyírség region, East Hungary.

Methods

We selected 26 sand grassland sites grazed by cattle or sheep and classified them into four intensity levels. Vegetation composition was surveyed in 2 m × 2 m plots. We harvested the above-ground biomass from 20 cm × 20 cm plots; then dried and sorted it to live biomass, litter, moss, and lichen. We compared Rao dissimilarity index, species richness, Shannon diversity, evenness, and the community-weighted means of nine vegetative and generative traits along a grazing intensity gradient. We calculated functional richness, evenness, and divergence for comparison.

Results

We found that some diversity metrics and community-weighted means of most studied traits were significantly affected by grazing intensity. Several characteristics were also affected by the interaction of grazing intensity and livestock type, but none of the studied characteristics was affected by livestock type in itself. Increasing Rao dissimilarity index peaking at the fourth grazing intensity level was detected, but for other multitrait indices, no such changes were proven, except for functional divergence, which was the lowest at the first intensity level. Graminoid, forb, and litter biomass were significantly affected by intensity, but none of the biomass fractions was affected by livestock type.

Conclusions

We suggest that for the management of sand grasslands, grazing intensity should be carefully adjusted, considering not only livestock units per hectare. For practical recommendations, well-defined, long-term experiments studying different livestock and habitat types along an intensity gradient would be essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号