首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sertoli cell tumors are very rare testicular tumors, representing 0.4% to 1.5% of all testicular malignancies. They are subclassified as classic, large-cell calcifying, and sclerosing Sertoli cell tumors (SSCT) based on distinct clinical features. Only 42 cases of SSCTs have been reported in the literature. We present a case of a 23-year-old man diagnosed with SSCT.Key words: Testicular neoplasm, Sertoli cell tumor, Sclerosing Sertoli cell tumorA 23-year-old man was referred to the Cleveland Clinic Department of Urology (Cleveland, OH) for an incidentally detected right testicular mass. The mass was identified during a work-up for transient left testicular discomfort. His only notable medical history was nephrolithiasis. There was no personal or family history of testicular cancer or cryptorchidism. On physical examination, he was a well-nourished, well-masculinized young man without gynecomastia. Testicular examination revealed normal volume and consistency bilaterally without other relevant findings. Testicular ultrasonography demonstrated an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle with peripheral flow on color Doppler (Figure 1).Open in a separate windowFigure 1Testicular ultrasound demonstrating an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle (blue arrows).The remainder of the ultrasound examination yielded normal results. Lactic dehydrogenase, B-human chorionic gonadotropin, and α-fetoprotein levels were all within the normal range. After a thorough review of the options, the patient was then taken to the operating room for inguinal exploration. Intraoperative ultrasound confirmed a superficial 8-mm hypoechoic testis lesion. A whiteyellow, well-demarcated nodule was widely excised and a frozen section was sent to pathology for examination. The frozen section examination revealed the lesion to be a neoplasm with differential diagnosis including sclerosing Sertoli cell tumor (SSCT), adenomatoid tumor, and a variant of Leydig cell tumor. Because the final diagnosis could not be determined from frozen section, the decision was made to perform a right radical orchiectomy. Pathologic examination revealed a grossly unifocal, well-circumscribed, white, firm mass of 0.8 cm. Microscopically the lesion was composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Although the lesion was somewhat well circumscribed, entrapped seminiferous tubules with Sertoli-only cells were present within the tumor (Figure 2). Tumor cells had pale or eosinophilic cytoplasm with small and dark nuclei with inconspicuous nucleoli. The tumor was confined to the testis and margins were negative. A diagnosis of SSCT was reached, supported by positive immunostain results for steroidogenic factor 1, focal inhibin, and calretinin expression, and negative stain results for cytokeratin AE1/AE3 and epithelial membrane antigen in the tumor (Figure 3). The postoperative course was unremarkable. Computed tomography scan of the abdomen and pelvis and chest radiograph were negative for metastatic disease.Open in a separate windowFigure 2Low-power examination revealing a well-circumscribed tumor composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Hematoxylin and eosin stain, original magnification ×40. (B) High-power examination. Note entrapped seminiferous tubules lacking spermatogenesis. Hematoxylin and eosin stain, original magnification ×100.Open in a separate windowFigure 3Nuclear expression of steroidogenic factor 1 in the tumor as well as benign Sertoli cells in entrapped seminiferous tubules (original magnification ×200). (B) Focal calretinin expression in the tumor (inhibin had a similar staining pattern; original magnification ×100).  相似文献   

2.
The 47, XXX karyotype (triple X) has a frequency of 1 in 1000 female newborns. However, this karyotype is not usually suspected at birth or childhood. Female patients with a sex chromosome abnormality may be fertile. In patients with a 47, XXX cell line there appears to be an increased risk of a cytogenetically abnormal child but the extent of this risk cannot yet be determined; it is probably lower in the non-mosaic 47, XXX patient than the mosaic 46, XX/47, XXX one. We describe a new rare case of triple X woman and a Down''s syndrome offspring. The patient is 26 years of age. She is a housewife, her height is 160 cm and weight is 68 kg and her physical features and mentality are normal. She has had one pregnancy at the age of 25 years resulted in a girl with Down''s syndrome. The child had 47 chromosomes with trisomy 21 (47, XX, +21) Figure 1. The patient also has 47 chromosomes with a triple X karyotype (47, XX, +X) Figure 2. The patient''s husband (27 years old) is physically and mentally normal. He has 46 chromosomes with a normal XY karyotype (46, XY). There are neither Consanguinity between her parent''s nor she and her husband.Open in a separate windowFigure 1Karyotype 47, XX + 21 of the daughter of Triple X syndromeOpen in a separate windowFigure 2Karyptype 47, XX + X of the Down syndrome''s mother  相似文献   

3.
4.
5.
6.
Cryptochrome 2 (CRY2) is a blue/UV-A light receptor that regulates light inhibition of cell elongation and photoperiodic promotion of floral initiation in Arabidopsis. We and others have previously shown that CRY2 is a nuclear protein that regulates gene expression to affect plant development. We also showed that CRY2 is phosphorylated in response to blue light and the phosphorylated CRY2 is most likely active and degraded in blue light. Given that protein translation (and probably chromophore attachment) takes place in the cytosol and that a photoreceptor would absorb photon instantaneously, it would be interesting to know where those inter-connected events occur in the cell. Our results showed that freshly synthesized CRY2 photoreceptor is inactive in the cytosol although it may be photon-excited, it is imported into the nucleus where the photoreceptor is phosphorylated, performs its function, becomes ubiquitinated, and eventually gets degraded (Fig. 1).1 To our knowledge, this is the first example in any organism that a photoreceptor is shown to complete its post-translational life cycle in a single subcellular compartment.Open in a separate windowFigure 1A model depicting the post-translational life cycle of CRY2. Pi, phosphate group; Ubq, ubiquitin.Key words: blue light, cryptochrome, ubiquitination, phosphorylation, Arabidopsis  相似文献   

7.
Bryophytes as the first land plants are believed to have colonized the land from a fresh water origin, requiring adaptive mechanisms that survival of dehydration. Physcomitrella patens is such a non-vascular bryophyte and shows rare desiccation tolerance in its vegetative tissues. Previous studies showed that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling and microtubule depolymerization. And proteomic alteration supported the cellular structural changes in respond to desiccation stress.1 In this addendum, we report that Golgi bodies are absent and adaptor protein complex AP-1 large subunit is downregulated during the course of dehydration. Those phenomena may be adverse in protein posttranslational modification, protein sorting and cell walls synthesis under the desiccation condition.Key words: AP-1 protein, cell ultrastructure, desiccation, golgi bodies, physcomitrella, proteomeThe plant Golgi apparatus is composed of many small stacks of cisternae, sometimes known as dictyosomes. The Golgi is a complex polarized organelle consisting of both a cis and trans side, containing compartments with functionally different capacities for directing cellular components. The plant Golgi apparatus synthesis a wide range of cell wall polysaccharides and proteoglycans, and also carries out O-linked glycosylation and N-linked glycan processing.25 Moreover, the Golgi is involved in returning escaped proteins back to the endoplasmic reticulum, sorting of proteins and polysaccharides to the cell wall or vacuoles, and in organizing the compartmentation of its own enzymes by retention or retrieval mechanisms.6 In conclusion, The Golgi apparatus is central to the growth and division of the plant cell through its roles in protein glycosylation, protein sorting and cell wall synthesis.The transit of proteins and lipids from the trans-Golgi network (TGN) and the plasma membrane to endosomes within eucaryotic cells occurs via the budding and fusion of clathrin-coated vesicles (CCVs).7,8 At the TGN, this process is mediated by the heterotetrameric AP-1 adaptor complex, which consists of two large subunits, β and γ1; a medium subunit, µ1; and a small σ1 subunit. Recruitment of AP-1 to the TGN membrane is regulated by a small GTPase, ADP-ribosylation factor 1 (ARF1), which cycles between an inactive GDP-bound form in cytosol and an active GTP-bound form that associates with the membrane like other small GTPase.9 There is also evidence that phosphorylation/dephosphorylation events are involved in the regulation of the function of AP-1. Ghosh and Kornfeld demostrated that AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its β1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated β1 compared with phosphorylated µ1. Once on the membrane, the µ1 subunit undergoes phosphorylation, which results in a conformation change. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of µ1 (and µ2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.10Plants experience desiccation stress either as part of a developmental programme, such as during seed maturation, or because of reductions in air humid and water availability in the soil. Underlying the ability of bryophytes to withstand periods of desiccation are morphological and biochemical adaptations. Plants respond to stress as individual cells and synergistically as a whole organism. Scanning electron microscopy observation showed that the P. patens gametophore cells were shrunk upon the treatment of desiccation, and the shrinking started from the edge of the leaves (Fig. 1). We could clearly observe some dark granula in the untreated cells, but these granula disappeared post-desiccation treatment (Fig. 1). Transmission electron microscopy also revealed that the large stacks of Golgi bodies and numerous coated vesicles are typically visible in the hydrated cells (Fig. 2), but these are absent in the desiccative cells (data not shown). The plant Golgi apparatus plays an important role in protein glycosylation and sorting. Therefore, this event means that the protein sorting and the cargo transporting are disrupted by desiccation stress. During desiccation, the absentness of Golgi bodies reduce the leaf activities of cell, and this is expected to similar to plant dormancy which is a phenomenon in resurrection plants and some drought-tolerant plants. In addition, through two-dimensional gel electrophoresis (2-DE) and LC-MS/MS analysis, AP-1 large subunit was identified as downregulated protein during the course of dehydration (Fig. 3). AP-1 is ubiquitously expressed and participates in the budding of clathrin-coated vesicles from the trans-Golgi network (TGN) and endosomes. AP-1 also recognizes sorting motifs in cargo molecules. Our results suggested that desiccation led to a marked disrupt in protein posttranslational modification, protein sorting and cell walls synthesis.Open in a separate windowFigure 1Scanning Electron microscopy images of normal and dehydrated P. patens gametophores. (A) the fresh leaf; (B) enlargement of the rectangle area of (A); (C) dehydrated gametophores of P. patens. Bar = 5 µm.Open in a separate windowFigure 2Transmission electron microscopy images of cell in fresh game-tophores. The arrows indicate Golgi body, Bar = 2 µm.Open in a separate windowFigure 3Part protein profile of the control and desiccation plants. The arrows indicate the AP-1 large subunit.  相似文献   

8.
9.
Reactive oxygen species (ROS) fulfil many functions in plants. They have a signaling role in several physiological mechanisms, but they are also directly involved as substrates in important reactions, especially in the apoplast. Two ROS, superoxide and hydrogen peroxide, were shown to exhibit a typical accumulation pattern in the Arabidopsis root apex. While hydrogen peroxide is mainly present in the cell wall of fully elongated cells in the region of root hair formation, superoxide accumulation roughly coincides with the transition zone, between the meristem and the fast elongating zone. Developing lateral roots also exhibit a strong superoxide labeling with the same localization.Key Words: superoxide, hydrogen peroxide, cell elongation, transition zone, nitroblue tetrazoliumIn a recent work,1 we have shown that superoxide radical and hydrogen peroxide have different accumulation sites in Arabidopsis root tip. Hydrogen peroxide is mainly present in a region identified as “differentiation zone”, according to the nomenclature used by Scheres et al.2 This localization fits well with the role that was assigned to this ROS in the formation of root hairs.3 This hypothesis was strengthened by the fact that umbelliferone, which promotes the in vitro and in vivo formation of hydrogen peroxide by peroxidases, induces the formation and the elongation of root hairs. In contrast, potassium iodide, a H2O2 scavenger, prevents the formation of root hairs, but does not completely abolished their initiation.As for superoxide radical, it accumulates mainly in apoplast of cells ranging from the proximal part of root meristem to the point where cells initiate their fast elongation. This localization is in agreement with a role of superoxide in the cell elongation process.1 This conclusion can be refined, taking into account the work of Baluška and coll.4,5 Using various functional and structural criteria, these authors identified four distinct zones in the root apex of Arabidopsis. They introduced an additional zone, between the meristem and the fast elongating cells, named “transition zone”. This region comprises cells which do not divide any more and are preparing their elongation. A reappraisal of the localization of superoxide accumulation in the light of this classification could suggest that this ROS is actually mainly associated with this transition zone, rather than with the beginning of the elongation zone. Figure 1 shows an Arabidopsis root stained for the presence of superoxide with nitroblue tetrazolium. It appears that the strong superoxide staining ranges from about 80 to 250 µm away from the root tip. The respective sizes of the various zones somewhat differ from the sizes reported (in ref. 5). It is difficult to precisely determine the border between the meristem and the transition zone, which should be around 120 µm. The fast elongation zone begins at about 240 µm. Fast elongating cells exhibit only a slight superoxide staining in their cell wall. Therefore, it appears that superoxide accumulates mainly in the wall of cells preparing their rapid elongation. It has been reported that cells in the transition zone undergo several modifications to prepare their growth. This includes reactions leading to cell wall loosening.6,7 The presence of superoxide in the cell wall of those cells could participate in the onset of the loosening process, for example by interacting with peroxidases to produce hydroxyl radicals.8Open in a separate windowFigure 1Distribution of superoxide radical in the root of a 7-day old Arabidopsis seedling stained with nitroblue tetrazolium. Growth conditions and staining procedure were as described (in ref. 1). The scale indicates µm, starting from the root cap junction. The picture was taken with a MZ 16 Leica stereomicroscope. Arrowheads point to root hairs in formation. Black arrow, basal limit of meristem. White arrow, onset of the fast elongation zone.When roots get older, the intensity of superoxide staining in the main root tip decreases, while the apex of the newly formed lateral roots exhibits a stronger reaction (Fig. 2). This could be related to the important growth potential of young lateral roots. The emerging root primordium is usually clearly positive (Fig. 2A) and in a fully formed lateral root, superoxide staining is concentrated in a zone between the meristem and elongated cells, most likely corresponding to the transition zone (Fig. 2B). In conclusion, superoxide radical seems to accumulate in the wall of cells preparing their elongation in the transition zone of Arabidopsis root apex.Open in a separate windowFigure 2Detection of superoxide radical by nitroblue tetrazolium in a lateral root primordium marked by an arrow (A) and in a developing lateral root (B). mr, main root. Scale bar: 100 µm.  相似文献   

10.
11.
12.
13.
14.
15.
The gene rapL lies within the region of the Streptomyces hygroscopicus chromosome which contains the biosynthetic gene cluster for the immunosuppressant rapamycin. Introduction of a frameshift mutation into rapL by ΦC31 phage-mediated gene replacement gave rise to a mutant which did not produce significant amounts of rapamycin. Growth of this rapL mutant on media containing added l-pipecolate restored wild-type levels of rapamycin production, consistent with a proposal that rapL encodes a specific l-lysine cyclodeaminase important for the production of the l-pipecolate precursor. In the presence of added proline derivatives, rapL mutants synthesized novel rapamycin analogs, indicating a relaxed substrate specificity for the enzyme catalyzing pipecolate incorporation into the macrocycle.Rapamycin is a 31-member macrocyclic polyketide produced by Streptomyces hygroscopicus NRRL 5491 which, like the structurally related compounds FK506 and immunomycin (Fig. (Fig.1),1), has potent immunosuppressive properties (24). Such compounds are potentially valuable in the treatment of autoimmune diseases and in preventing the rejection of transplanted tissues (16). The biosynthesis of rapamycin requires a modular polyketide synthase, which uses a shikimate-derived starter unit (11, 20) and which carries out a total of fourteen successive cycles of polyketide chain elongation that resemble the steps in fatty acid biosynthesis (2, 27). l-Pipecolic acid is then incorporated (21) into the chain, followed by closure of the macrocyclic ring, and both these steps are believed to be catalyzed by a pipecolate-incorporating enzyme (PIE) (18), the product of the rapP gene (8, 15). Further site-specific oxidations and O-methylation steps (15) are then required to produce rapamycin. Open in a separate windowFIG. 1Structures of rapamycin, FK506, and immunomycin.The origin of the pipecolic acid inserted into rapamycin has been previously established (21) to be free l-pipecolic acid derived from l-lysine (although the possible role of d-lysine as a precursor must also be borne in mind) (9). Previous work with other systems has suggested several alternative pathways for pipecolate formation from lysine (22), but the results of the incorporation of labelled lysine into the pipecolate moiety of immunomycin (Fig. (Fig.1)1) clearly indicate loss of the α-nitrogen atom (3). More recently, the sequencing of the rap gene cluster revealed the presence of the rapL gene (Fig. (Fig.2),2), whose deduced gene product bears striking sequence similarity to two isoenzymes of ornithine deaminase from Agrobacterium tumefaciens (25, 26). Ornithine deaminase catalyzes the deaminative cyclization of ornithine to proline, and we have proposed (15) that the rapL gene product catalyzes the analogous conversion of l-lysine to l-pipecolate (Fig. (Fig.3).3). Open in a separate windowFIG. 2A portion of the rapamycin biosynthetic gene cluster which contains ancillary (non-polyketide synthase) genes (15, 27). PKS, polyketide synthase.Open in a separate windowFIG. 3(A) The conversion of l-ornithine to l-proline by ornithine cyclodeaminase (17). (B) Proposed conversion of l-lysine to l-pipecolic acid by the rapL gene product.Here, we report the use of ΦC31 phage-mediated gene replacement (10) to introduce a frameshift mutation into rapL and the ability of the mutant to synthesize rapamycins in the absence or presence of added pipecolate or pipecolate analogs.  相似文献   

16.
Some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The specific labelling of the synergid cells and its filiform apparatus, which are the cells responsible for pollen tube attraction, and also the specific labelling of the micropyle and micropylar nucellus, which constitutes the pollen tube entryway into the embryo sac, are quite indicative of this role. We also discuss the possibility that AGPs in the sperm cells are probably involved in the double fertilization process.Key words: Arabidopsis, arabinogalactan proteins, AGP 6, gametic cells, pollen tube guidanceThe selective labelling obtained by us with monoclonal antibodies directed to the glycosidic parts of AGPs, in Arabidopsis and in other plant species, namely Amaranthus hypochondriacus,1 Actinidia deliciosa2 and Catharanthus roseus, shows that some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The evaluation of the selective labelling obtained with AGP-specific monoclonal antibodies (Mabs) JIM 8, JIM 13, MAC 207 and LM 2, during Arabidopsis pollen development, led us to postulate that some AGPs, in particular those with sugar epitopes identified by JIM 8 and JIM 13, can be classified as molecular markers for generative cell differentiation and development into male gametes.Likewise, we also postulated that the AGP epitopes recognized by Mabs JIM 8 and JIM 13 are also molecular markers for the development of the embryo sac in Arabidopsis thaliana. Moreover, these AGP epitopes are also present along the pollen tube pathway, predominantly in its last stage, the micropyle, which constitutes the region of the ovule in the immediate vicinity of the pollen tube target, the embryo sac.3We have recently shown the expression of AGP genes in Arabidopsis pollen grains and pollen tubes and also the presence of AGPs along Arabidopsis pollen tube cell surface and tip region, as opposed to what had been reported earlier. We have also shown that only a subset of AGP genes is expressed in pollen grain and pollen tubes, with prevalence for Agp6 and Agp11, suggesting a specific and defined role for some AGPs in Arabidopsis sexual reproduction (Pereira et al., 2006).4Therefore we continued by using an Arabidopsis line expressing GFP under the command of the Agp6 gene promoter sequence. These plants were studied under a low-power binocular fluorescence microscope. GFP labelling was only observed in haploid cells, pollen grains (Fig. 1) and pollen tubes (Fig. 2); all other tissues clearly showed no labelling. These observations confirmed the specific expression of Agp6 in pollen grains and pollen tubes. As shown in the Figures 1 and and2,2, the labelling with GFP is present in all pollen tube extension, so probably, AGP 6 is not one of the AGPs identified by JIM 8 and JIM 13, otherwise GFP light emission would localize more specifically in the sperm cells.5 So we think that MAC 207 which labels the entire pollen tube wall (Fig. 3) may indeed be recognizing AGP6, which seems to be expressed in the vegetative cell. In other words, the specific labelling obtained for the generative cell and for the two male gametes, is probably given by AGPs that are present in very low quantities, apparently not the case for AGP 6 or AGP 11.Open in a separate windowFigure 1Low-power binocular fluorescence microscope image of an Arabidopsis flower with the AGP 6 promoter:GFP construct. The labelling is evident in pollen grains that are being released and in others that are already in the stigma papillae.Open in a separate windowFigure 2Low-power binocular fluorescence microscope image of an Arabidopsis ovary with the AGP6 promoter:GFP construct. The ovary was partially opened to show the pollen tubes growing in the septum, and into the ovules. The pollen tubes are also labelled by GFP.Open in a separate windowFigure 3Imunofluorescence image of a pollen tube growing in vitro, and labeled by MAC 207 monoclonal antibody. The labelling is evident all over the pollen tube wall.After targeting an ovule, the pollen tube growth arrests inside a synergid cell and bursts, releasing the two sperm cells. It has recently been shown that sperm cells, for long considered to be passive cargo, are involved in directing the pollen tube to its target. In Arabidopsis, HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to the ovules.6 The same could be happening with the AGPs identified in the sperm cells by JIM 8 and JIM 13. We are now working on tagging these AGPs and using transgenic plants aiming to answer to such questions.Pollen tube guidance in the ovary has been shown to be in the control of signals produced by the embryo sac. When pollen tubes enter ovules bearing feronia or sirene mutations (the embryo sac is mutated), they do not stop growing and do not burst. In Zea mays a pollen tube attractant was recently identified in the egg apparatus and synergids.7 Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. This is the same type of labelling that we have shown in Arabidopsis ovules, using Mabs JIM 8 and JIM 13. We are now involved in the identification of the specific AGPs associated with the labellings that we have been showing.  相似文献   

17.
We recently noticed that there is a major error in Figure 1 of our review published in Epignetics 2010, Volume 6, Issue 2. During the preparation of the figure, the human and yeast H2B tyrosines were numbered the same, making the human numbering incorrect. The correct Figure 1 with proper numbering of human tyrosines is below.Erratum to:Singh R.K. and Gunjan A. Histone tyrosine phosphorylation comes of age.Epigenetics 2011; 6:153-60.We recently noticed that there is a major error in Figure 1 of our review published in Epignetics 2010, Volume 6, Issue 2. During the preparation of the figure, the human and yeast H2B tyrosines were numbered the same, making the human numbering incorrect. The correct Figure 1 with proper numbering of human tyrosines is below.Open in a separate windowFigure 1. Tyrosine residues are highly conserved between budding yeast and mammalian core histones. The four canonical core histone proteins from the budding yeast Saccharomyces cerevisiae are indicated by the prefix “Sc” and denoted in blue. The mammalian core histones and the mammalian variant histone H2A.X are shown in black. The number of amino acid (aa) residues in each core histone is indicated on the right. The location of the a-helices in the secondary structure of the histone proteins is indicated by cylinders. Tyrosine residues are shown as balloons and the tyrosine residues essential for viability in budding yeast histones are indicated by red balloons. Tyrosines in mammalian histones have not yet been evaluated to determine the residues essential for viability. Note the high degree of conservation of the location as well as the spacing of all but one tyrosine residue between budding yeast and mammalian core histones (H3 Y54 being the exception). Tyrosine residues that have recently been shown to be phosphorylated in vivo are marked by yellow “explosion” signs and the letter “P.” Additional tyrosine residues that are predicted to be reasonably accessible in the nucleosomal context under certain conditions and can be potentially phosphorylated in vivo are indicated by a yellow halo only on the mammalian histones for clarity, but are likely to be just as applicable to the yeast histones. Solid yellow halo indicates higher probability of phosphorylation, while a dashed yellow halo indicates lower probability of phosphorylation.  相似文献   

18.
19.
20.
Small monomeric RAC/ROP GTPases act as molecular switches in signal transduction processes of plant development and stress responses. They emerged as crucial players in plant-pathogen interactions either by supporting susceptibility or resistance. In a recent publication, we showed that constitutively activated (CA) mutants of different barley (Hordeum vulgare) RAC/ROPs regulate susceptibility to barley fungal leaf pathogens of different life style in a contrasting way. This illustrates the distinctive signalling roles of RAC/ROPs for different plant-pathogen combinations. We also reported the involvement of RAC/ROPs in plant epidermis development in a monocotyledonous plant. Here we further discuss a failure of CA HvRAC/ROP-expressing barley to normally develop stomata.Key words: Hordeum vulgare, G-proteins, RAC, ROP, cell expansion, stomata, transpirationMembers of the RHO family of small G-proteins in plants (RAC/ROPs) regulate signal transduction processes at the plasma membrane.1 They act as multifunctional signalling switches in plant development and a variety of stress responses. RAC/ROP GTPases play regulatory roles in polar growth and cell morphogenesis in several cell systems including pollen tubes, developing root hairs and leaf pavement cells.2In a recent publication,3 we showed that constitutively activated (CA) mutants of different barley (Hordeum vulgare) RAC/ROPs support susceptibility to the barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). CA HvRAC1 supported susceptibility to biotrophic Bgh but resistance to hemibiotrophic Magnaporthe oryzae in barley at the penetration level in both cases. Additionally, CA HvRAC1 supported local callose deposition at sites of attack from Bgh and a secondary H2O2 burst in whole non-penetrated epidermal cells. This supports a regulatory function of RAC/ROPs in plant defence1 and the potential corruption of defence pathways in susceptibility to Bgh. Because the rice ortholog of HvRAC1, OsRAC1, can regulate an H2O2 burst via activation of the plasma membrane NADPH oxidase OsRBOHB,4 one can speculate that the secondary H2O2 burst in CA HvRAC1 barley could also be caused by over-activation of an NADPH oxidase. However, CA HvRAC1 barley was also more susceptible to fungal penetration, and penetrated cells did not show an H2O2 burst. Hence, CA HvRAC1 did not contribute to penetration resistance, and the H2O2 burst might have been suppressed by Bgh after successful penetration. Interestingly, Bgh secretes a catalase during interaction with the plant.5The involvement of RAC/ROPs in plant development has been widely studied in the dicots Arabidopsis and tobacco. In Arabidopsis, CA AtRAC/ROPs disturb root hair tip growth and epidermal cell morphogenesis.6,7 We showed similar developmental aberrations as a result of CA HvRAC/ROP expression in monocotyledonous barley. Root hair polarity disruption and enhanced leaf epidermal cell expansion was observed in CA HvRAC/ROP expressing barley. Here, we further report on reduced or abnormal development of stomata as an effect of CA HvRAC/ROP expression.In barley, stomata and short epidermal cells alternate in a row of leaf epidermal cells (Fig. 1A). The number of stomata number was significantly reduced in three CA HvRAC/ROP (CA HvRACB, CAHvRAC3, CA HvRAC1) expressing barley genotypes when compared to azygous controls (barley siblings that lost the transgene due to segregation) (Fig. 1E). In part, this could be explained by enhanced length of epidermal cells intercalated between stomata (Fig. 1B). The presence of longer epidermal cells in all CA HvRAC/ROP-barleys further supports that RAC/ROPs are operating in epidermal cell expansion.3Open in a separate windowFigure 1Stomatal abnormalities observed in CA HvROPexpressing transgenic barley leaves. (A) Wild type leaf adaxial epidermis with alternating stomata complexes (arrows) and short epidermal cells (asterisk). (B) Presence of more than one short epidermal cell in between two stomata. Arrows point the stomata. Double headed arrows highlight intercalated cells with enhanced cell length (C) Two stomata lacking an intercalated short epidermal cell. (D) Stoma failed to develop and left an abnormal blank cell. (E) Average number of stomata present in 5 cm of a stomatal row in transgenic plants expressing distinct CA barley CA HvRAC/ROPs. For all samples, stomatal rows present on either side of the mid rib were counted in the leaf upper epidermis. Fully expanded leaves of 3-weeks-old barley plants were used for counting stomata. Error bars show 95% confidence intervals. Repetition of the experiment led to similar results. Scale bars = 50 µm.Previously, we carried out porometry experiments to measure stomata conductivity in CA HvRACB expressing barley leaves.8 The CA HvRACB leaves showed up to 50% less transpiration than azygous controls without any treatment. Additionally, CA HvRACB leaves were less responsive to abscisic acid (ABA) and subsequently they could not effectively reduce transpiration when treated with ABA or when cut-off from water supply.8 Our data on numbers of stomata per leaf segment could now explain the lower rates of transpiration in non-stressed CA HvRACB barley when compared to wild type.Apart from the stomata number, developmental abnormalities were observed in the arrangement of epidermal cells. Generally, the shape of epidermal cells was less regular in CA HvRAC/ROP barley.3 We also observed the presence of more than one short epidermal cell in between two stomata (Fig. 1B) or two stomata lacking an intercalated short epidermal cell (Fig. 1C), or stomata failed to develop, which ended up in an abnormally short epidermal cell (Fig. 1D). Although such abnormalities were also rarely observed in wild type plants, all three CA HvRAC/ROP-barley leaves exhibited a clearly higher frequency of abnormalities in a given length of a stomata row. Together, CA HvRAC/ROPs had an effect on both the number and development of stomata. These observations suggest that RAC/ROPs are not only operating in cell expansion but also in barley cell differentiation for stomata development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号