首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated.

Methodology/Principal Findings

A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites.The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species.

Conclusion/Significance

Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification.  相似文献   

2.

Background

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols) or tissues (placenta, stillborn) of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV) in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan), east (Kenya, Tanzania, Somalia), west (Senegal, Mauritania) and south (South Africa), but also in the Indian Ocean (Madagascar, Mayotte) and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries.

Methodology/Principal Findings

We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages). RVFV-specific IgG was found in a total of 145 individuals (3.3%) suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8%) and the seroprevalence increased gradually with age in males but not in females.

Conclusions/Significance

Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and hunting outside the villages, where they may be more exposed to mosquito bites and infected animals. Further investigations are needed to determine the putative sylvan cycle of RVFV, including the mosquito species and the reservoir role of wild animals in the viral maintenance cycle.  相似文献   

3.

Background

Previously, we investigated the role of the Rift Valley fever virus (RVFV) virulence genes NSs and NSm in mosquitoes and demonstrated that deletion of NSm significantly reduced the infection, dissemination, and transmission rates of RVFV in Aedes aegypti mosquitoes. The specific aim of this study was to further characterize midgut infection and escape barriers of RVFV in Ae. aegypti infected with reverse genetics-generated wild type RVFV (rRVF-wt) or RVFV lacking the NSm virulence gene (rRVF-ΔNSm) by examining sagittal sections of infected mosquitoes for viral antigen at various time points post-infection.

Methodology and Principal Findings

Ae. aegypti mosquitoes were fed an infectious blood meal containing either rRVF-wt or rRVF-ΔNSm. On days 0, 1, 2, 3, 4, 6, 8, 10, 12, and 14 post-infection, mosquitoes from each experimental group were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned, and examined for RVFV antigen by immunofluorescence assay. Remaining mosquitoes at day 14 were assayed for infection, dissemination, and transmission. Disseminated infections were observed in mosquitoes as early as three days post infection for both virus strains. However, infection rates for rRVF-ΔNSm were statistically significantly less than for rRVF-wt. Posterior midgut infections in mosquitoes infected with rRVF-wt were extensive, whereas midgut infections of mosquitoes infected with rRVF-ΔNSm were confined to one or a few small foci.

Conclusions/Significance

Deletion of NSm resulted in the reduced ability of RVFV to enter, replicate, and disseminate from the midgut epithelial cells. NSm appears to have a functional role in the vector competence of mosquitoes for RVFV at the level of the midgut barrier.  相似文献   

4.

Background

Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent.

Methodology/Principal Findings

We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12.

Conclusion/Significance

These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use.  相似文献   

5.

Background

In East Africa, epidemics of Rift Valley fever (RVF) occur in cycles of 5–15 years following unusually high rainfall. RVF transmission during inter-epidemic periods (IEP) generally passes undetected in absence of surveillance in mammalian hosts and vectors. We studied IEP transmission of RVF and evaluated the demographic, behavioural, occupational and spatial determinants of past RVF infection.

Methodology

Between March and August 2012 we collected blood samples, and administered a risk factor questionnaire among 606 inhabitants of 6 villages in the seasonally inundated Kilombero Valley, Tanzania. ELISA tests were used to detect RVFV IgM and IgG antibodies in serum samples. Risk factors were examined by mixed effects logistic regression.

Findings

RVF virus IgM antibodies, indicating recent RVFV acquisition, were detected in 16 participants, representing 2.6% overall and in 22.5% of inhibition ELISA positives (n = 71). Four of 16 (25.0%) IgM positives and 11/71 (15.5%) of individuals with inhibition ELISA sero-positivity reported they had had no previous contact with host animals. Sero-positivity on inhibition ELISA was 11.7% (95% CI 9.2–14.5) and risk was elevated with age (odds ratio (OR) 1.03 per year; 95% CI 1.01–1.04), among milkers (OR 2.19; 95% CI 1.23–3.91), and individuals eating raw meat (OR 4.17; 95% CI 1.18–14.66). Households keeping livestock had a higher probability of having members with evidence of past infection (OR = 3.04, 95% CI = 1.42–6.48) than those that do not keep livestock.

Conclusion

There is inter-epidemic acquisition of RVFV in Kilombero Valley inhabitants. In the wake of declining malaria incidence, these findings underscore the need for clinicians to consider RVF in the differential diagnosis for febrile illnesses. Several types of direct contact with livestock are important risk factors for past infection with RVFV in this study’s population. However, at least part of RVFV transmission appears to have occurred through bites of infected mosquitoes.  相似文献   

6.

Background

The global emergence of West Nile virus (WNV) has highlighted the importance of mosquito-borne viruses. These are inoculated in vector saliva into the vertebrate skin and circulatory system. Arthropod-borne (arbo)viruses such as WNV are transmitted to vertebrates as an infectious mosquito probes the skin for blood, depositing the virus and saliva into the skin and circulation. Growing evidence has demonstrated that arthropod, and recently mosquito, saliva can have a profound effect on pathogen transmission efficiency, pathogenesis, and disease course. A potentially important aspect of natural infections that has been ignored is that in nature vertebrates are typically exposed to the feeding of uninfected mosquitoes prior to the mosquito that transmits WNV. The possibility that pre-exposure to mosquito saliva might modulate WNV infection was explored.

Principal Findings

Here we report that sensitization to mosquito saliva exacerbates viral infection. Prior exposure of mice to mosquito feeding resulted in increased mortality following WNV infection. This aggravated disease course was associated with enhanced early viral replication, increased interleukin-10 expression, and elevated influx of WNV-susceptible cell types to the inoculation site. This exacerbated disease course was mimicked by passive transfer of mosquito-sensitized serum.

Significance

This is the first report that sensitization to arthropod saliva can exacerbate arthropod-borne infection, contrary to previous studies with parasite and bacteria infections. This research suggests that in addition to the seroreactivity of the host to virus, it is important to take into account the immune response to vector feeding.  相似文献   

7.

Background

Rift Valley fever virus (RVFV) causes disease in livestock and humans. It can be transmitted by mosquitoes, inhalation or physical contact with the body fluids of infected animals. Severe clinical cases are characterized by acute hepatitis with hemorrhage, meningoencephalitis and/or retinitis. The dynamics of RVFV infection and the cell types infected in vivo are poorly understood.

Methodology/Principal Findings

RVFV strains expressing humanized Renilla luciferase (hRLuc) or green fluorescent protein (GFP) were generated and inoculated to susceptible Ifnar1-deficient mice. We investigated the tissue tropism in these mice and the nature of the target cells in vivo using whole-organ imaging and flow cytometry. After intraperitoneal inoculation, hRLuc signal was observed primarily in the thymus, spleen and liver. Macrophages infiltrating various tissues, in particular the adipose tissue surrounding the pancreas also expressed the virus. The liver rapidly turned into the major luminescent organ and the mice succumbed to severe hepatitis. The brain remained weakly luminescent throughout infection. FACS analysis in RVFV-GFP-infected mice showed that the macrophages, dendritic cells and granulocytes were main target cells for RVFV. The crucial role of cells of the monocyte/macrophage/dendritic lineage during RVFV infection was confirmed by the slower viral dissemination, decrease in RVFV titers in blood, and prolonged survival of macrophage- and dendritic cell-depleted mice following treatment with clodronate liposomes. Upon dermal and nasal inoculations, the viral dissemination was primarily observed in the lymph node draining the injected ear and in the lungs respectively, with a significant increase in survival time.

Conclusions/Significance

These findings reveal the high levels of phagocytic cells harboring RVFV during viral infection in Ifnar1-deficient mice. They demonstrate that bioluminescent and fluorescent viruses can shed new light into the pathogenesis of RVFV infection.  相似文献   

8.

Background

The Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus. RVFV mostly causes outbreaks among domestic ruminants with a major economic impact. Human infections are associated with these events, with a fatality rate of 0.5–2%. Since the virus is able to use many mosquito species of temperate climates as vectors, it has a high potential to spread to outside Africa.

Methodology/Principal Findings

We conducted a stratified, cross-sectional sero-prevalence survey in 1228 participants from Mbeya region, southwestern Tanzania. Samples were selected from 17,872 persons who took part in a cohort study in 2007 and 2008. RVFV IgG status was determined by indirect immunofluorescence. Possible risk factors were analyzed using uni- and multi-variable Poisson regression models. We found a unique local maximum of RVFV IgG prevalence of 29.3% in a study site close to Lake Malawi (N = 150). The overall seroprevalence was 5.2%. Seropositivity was significantly associated with higher age, lower socio-economic status, ownership of cattle and decreased with distance to Lake Malawi. A high vegetation density, higher minimum and lower maximum temperatures were found to be associated with RVFV IgG positivity. Altitude of residence, especially on a small scale in the high-prevalence area was strongly correlated (PR 0.87 per meter, 95% CI = 0.80–0.94). Abundant surface water collections are present in the lower areas of the high-prevalence site. RVF has not been diagnosed clinically, nor an outbreak detected in the high-prevalence area.

Conclusions

RVFV is probably circulating endemically in the region. The presence of cattle, dense vegetation and temperate conditions favour mosquito propagation and virus replication in the vector and seem to play major roles in virus transmission and circulation. The environmental risk-factors that we identified could serve to more exactly determine areas at risk for RVFV endemicity.  相似文献   

9.

Background

Zika virus (ZIKV) is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.

Methodology/Principal Findings

To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80–85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi). Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.

Conclusions/Significance

The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.  相似文献   

10.

Background

Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route.

Methodology/Principal Findings

Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease.

Conclusions/Significance

Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug.  相似文献   

11.

Background

Mosquito-borne diseases are a worldwide public health threat. Mosquitoes transmit viruses or parasites during feeding, along with salivary proteins that modulate host responses to facilitate both blood feeding and pathogen transmission. Understanding these earliest events in mosquito transmission of arboviruses by mosquitoes is essential for development and assessment of rational vaccine and treatment strategies. In this report, we compared host immune responses to chikungunya virus (CHIKV) transmission by (1) mosquito bite, or (2) by needle inoculation.

Methods and Findings

Differential cytokine expression was measured using quantitative real-time RT-PCR, at sites of uninfected mosquito bites, CHIKV-infected mosquito bites, and needle-inoculated CHIKV. Both uninfected and CHIKV infected mosquitoes polarized host cytokine response to a TH2 profile. Compared to uninfected mosquito bites, expression of IL-4 induced by CHIKV-infected mosquitoes were 150 fold and 527.1 fold higher at 3 hours post feeding (hpf) and 6 hpf, respectively. A significant suppression of TH1 cytokines and TLR-3 was also observed. These significant differences may result from variation in the composition of uninfected and CHIKV-infected mosquito saliva. Needle injected CHIKV induced a robust interferon-γ, no detectable IL-4, and a significant up-regulation of TLR-3.

Conclusions

This report describes the first analysis of cutaneous cytokines in mice bitten by CHIKV–infected mosquitoes. Our data demonstrate contrasting immune activation in the response to CHIKV infection by mosquito bite or needle inoculation. The significant role of mosquito saliva in these earliest events of CHIKV transmission and infection are highlighted.  相似文献   

12.

Background

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved.

Methodology/Principal Findings

In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR−/− mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge.

Conclusions/Significance

Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock.  相似文献   

13.

Background

Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors.

Methodology and Principal Findings

Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus.

Conclusions/Significance

In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.  相似文献   

14.

Background

In recent years, evidence of Rift Valley fever (RVF) transmission during inter-epidemic periods in parts of Africa has increasingly been reported. The inter-epidemic transmissions generally pass undetected where there is no surveillance in the livestock or human populations. We studied the presence of and the determinants for inter-epidemic RVF transmission in an area experiencing annual flooding in southern Tanzania.

Methodology

A cross-sectional sero-survey was conducted in randomly selected cattle, sheep and goats in the Kilombero river valley from May to August 2011, approximately four years after the 2006/07 RVF outbreak in Tanzania. The exposure status to RVF virus (RVFV) was determined using two commercial ELISA kits, detecting IgM and IgG antibodies in serum. Information about determinants was obtained through structured interviews with herd owners.

Findings

An overall seroprevalence of 11.3% (n = 1680) was recorded; 5.5% in animals born after the 2006/07 RVF outbreak and 22.7% in animals present during the outbreak. There was a linear increase in prevalence in the post-epidemic annual cohorts. Nine inhibition-ELISA positive samples were also positive for RVFV IgM antibodies indicating a recent infection. The spatial distribution of seroprevalence exhibited a few hotspots. The sex difference in seroprevalence in animals born after the previous epidemic was not significant (6.1% vs. 4.6% for females and males respectively, p = 0.158) whereas it was significant in animals present during the outbreak (26.0% vs. 7.8% for females and males respectively, p<0.001). Animals living >15 km from the flood plain were more likely to have antibodies than those living <5 km (OR 1.92; 95% CI 1.04–3.56). Species, breed, herd composition, grazing practices and altitude were not associated with seropositivity.

Conclusion

These findings indicate post-epidemic transmission of RVFV in the study area. The linear increase in seroprevalence in the post-epidemic annual cohorts implies a constant exposure and presence of active foci transmission preceding the survey.  相似文献   

15.

Background

Mosquito salivary proteins (MSPs) modulate the host immune response, leading to enhancement of arboviral infections. Identification of proteins in saliva responsible for immunomodulation and counteracting their effects on host immune response is a potential strategy to protect against arboviral disease. We selected a member of the D7 protein family, which are among the most abundant and immunogenic in mosquito saliva, as a vaccine candidate with the aim of neutralizing effects on the mammalian immune response normally elicited by mosquito saliva components during arbovirus transmission.

Methodology/Principal Findings

We identified D7 salivary proteins of Culex tarsalis, a West Nile virus (WNV) vector in North America, and expressed 36 kDa recombinant D7 (rD7) protein for use as a vaccine. Vaccinated mice exhibited enhanced interferon-γ and decreased interleukin-10 expression after uninfected mosquito bite; however, we found unexpectedly that rD7 vaccination resulted in enhanced pathogenesis from mosquito-transmitted WNV infection. Passive transfer of vaccinated mice sera to naïve mice also resulted in increased mortality rates from subsequent mosquito-transmitted WNV infection, implicating the humoral immune response to the vaccine in enhancement of viral pathogenesis. Vaccinated mice showed decreases in interferon-γ and increases in splenocytes producing the regulatory cytokine IL-10 after WNV infection by mosquito bite.

Conclusions/Significance

Vector saliva vaccines have successfully protected against other blood-feeding arthropod-transmitted diseases. Nevertheless, the rD7 salivary protein vaccine was not a good candidate for protection against WNV disease since immunized mice infected via an infected mosquito bite exhibited enhanced mortality. Selection of salivary protein vaccines on the bases of abundance and immunogenicity does not predict efficacy.  相似文献   

16.

Background

Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates.

Methodology/Principal Findings

Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice.

Conclusions/Significance

These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus.  相似文献   

17.

Background

Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding.

Methods

Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice.

Results

The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite.

Conclusion

This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission.  相似文献   

18.

Background

Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate.

Methodology/Principal Findings

To assess the receptivity of Singapore''s Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective.

Conclusions/Significance

This study showed that Singapore''s urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore''s current dengue control strategy is applicable to control ZIKV.  相似文献   

19.

Background

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis. To detect RVF virus (RVFV) infection, indirect immunoglobulin G (IgG) and immunoglobulin M (IgM) enzyme linked immunosorbent assays (ELISAs) which utilize recombinant RVFV nucleocapsid (RVFV-N) protein as assay antigen, have reportedly been used, however, there is still a need to develop more sensitive and specific methods of detection.

Methods

RVFV-N protein was expressed in Escherichia coli (E. coli) and purified by histidine-tag based affinity chromatography. This recombinant RVFV-N (rRVFV-N) protein was then used as antigen to develop an IgG sandwich ELISA and IgM capture ELISAs for human sera. Ninety six serum samples collected from healthy volunteers during the RVF surveillance programme in Kenya in 2013, and 93 serum samples collected from RVF-suspected patients during the 2006–2007 RVF outbreak in Kenya were used respectively, to evaluate the newly established rRVFV-N protein-based IgG sandwich ELISA and IgM capture ELISA systems in comparison with the inactivated virus-based ELISA systems.

Results

rRVFV-N protein-based-IgG sandwich ELISA and IgM capture ELISA for human sera were established. Both the new ELISA systems were in 100% concordance with the inactivated virus-based ELISA systems, with a sensitivity and specificity of 100%.

Conclusions

Recombinant RVFV-N is a safe and affordable antigen for RVF diagnosis. Our rRVFV-N-based ELISA systems are safe and reliable tools for diagnosis of RVFV infection in humans and especially useful in large-scale epidemiological investigation and for application in developing countries.
  相似文献   

20.

Background

Mosquitoes are vectors of many serious pathogens in tropical and sub-tropical countries. Current control strategies almost entirely rely upon insecticides, which increasingly face the problems of high cost, increasing mosquito resistance and negative effects on non-target organisms. Alternative strategies include the proposed use of inherited life-shortening agents, such as the Wolbachia bacterium. By shortening mosquito vector lifespan, Wolbachia could potentially reduce the vectorial capacity of mosquito populations. We have recently been able to stably transinfect Aedes aegypti mosquitoes with the life-shortening Wolbachia strain wMelPop, and are assessing various aspects of its interaction with the mosquito host to determine its likely impact on pathogen transmission as well as its potential ability to invade A. aegypti populations.

Methodology/Principal Findings

Here we have examined the probing behavior of Wolbachia-infected mosquitoes in an attempt to understand both the broader impact of Wolbachia infection on mosquito biology and, in particular, vectorial capacity. The probing behavior of wMelPop-infected mosquitoes at four adult ages was examined and compared to uninfected controls during video-recorded feeding trials on a human hand. Wolbachia-positive insects, from 15 days of age, showed a drastic increase in the time spent pre-probing and probing relative to uninfected controls. Two other important features for blood feeding, saliva volume and apyrase content of saliva, were also studied.

Conclusions/Significance

As A. aegypti infected with wMelPop age, they show increasing difficulty in completing the process of blood feeding effectively and efficiently. Wolbachia-infected mosquitoes on average produced smaller volumes of saliva that still contained the same amount of apyrase activity as uninfected mosquitoes. These effects on blood feeding behavior may reduce vectorial capacity and point to underlying physiological changes in Wolbachia-infected mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号