首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

2.
Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-gamma)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-gamma and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-na?ve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.  相似文献   

3.
Vaccines that elicit T cell responses try to mimic protective memory T cell immunity after infection by increasing the frequency of Ag-specific T cells in the immune repertoire. However, the factors that determine immunodominance during infection and after vaccination and the relation between immunodominance and protection are incompletely understood. We previously identified TB10.4(20-28) as an immunodominant epitope recognized by H2-K(d)-restricted CD8(+) T cells after M. tuberculosis infection. Here we report a second epitope, EspA(150-158), that is recognized by a substantial number of pulmonary CD8(+) T cells. The relative abundance of these T cells in the naive repertoire only partially predicts their relative frequency after M. tuberculosis infection. Furthermore, although vaccination with recombinant vaccinia virus expressing these epitopes changes their relative immunodominance in the preinfection T cell repertoire, this change is transient after challenge with M. tuberculosis. We speculate that factors intrinsic to the chronic nature of M. tuberculosis infection establishes the hierarchy of immunodominance and may explain the failure of some vaccines to provide protection.  相似文献   

4.
A successful prophylactic vaccine is characterized by long-lived immunity, which is critically dependent on CD4 T cell-mediated helper signals. Indeed, most licensed vaccines induce antigen-specific CD4 T cell responses, in addition to high-affinity antibodies. However, despite the important role of CD4 T cells in vaccine design and natural infection, few studies have characterized HIV-specific CD4 T cells due to their preferential susceptibility to HIV infection. To establish at the population level the impact of HIV-specific CD4 T cells on viral control and define the specificity of HIV-specific CD4 T cell peptide targeting, we conducted a comprehensive analysis of these responses to the entire HIV proteome in 93 subjects at different stages of HIV infection. We show that HIV-specific CD4 T cell responses were detectable in 92% of individuals and that the breadth of these responses showed a significant inverse correlation with the viral load (P = 0.009, R = -0.31). In particular, CD4 T cell responses targeting Gag were robustly associated with lower levels of viremia (P = 0.0002, R = -0.45). Importantly, differences in the immunodominance profile of HIV-specific CD4 T cell responses distinguished HIV controllers from progressors. Furthermore, Gag/Env ratios were a potent marker of viral control, with a high frequency and magnitude of Gag responses and low proportion of Env responses associated with effective immune control. At the epitope level, targeting of three distinct Gag peptides was linked to spontaneous HIV control (P = 0.60 to 0.85). Inclusion of these immunogenic proteins and peptides in future HIV vaccines may act as a critical cornerstone for enhancing protective T cell responses.  相似文献   

5.
Strong competition between cytotoxic T-lymphocytes (CTLs) specific for different epitopes in human immunodeficiency virus (HIV) infection would have important implications for the design of an HIV vaccine. To investigate evidence for this type of competition, we analysed CTL response data from 97 patients with chronic HIV infection who were frequently sampled for up to 96 weeks. For each sample, CTL responses directed against a range of known epitopes in gag, pol and nef were measured using an enzyme-linked immunospot assay. The Lotka–Volterra model of competition was used to predict patterns that would be expected from these data if competitive interactions materially affect CTL numbers. In this application, the model predicts that when hosts make responses to a larger number of epitopes, they would have diminished responses to each epitope and that if one epitope-specific response becomes dramatically smaller, others would increase in size to compensate; conversely if one response grows, others would shrink. Analysis of the experimental data reveals results that are wholly inconsistent with these predictions. In hosts who respond to more epitopes, the average epitope-specific response tends to be larger, not smaller. Furthermore, responses to different epitopes almost always increase in unison or decrease in unison. Our findings are therefore inconsistent with the hypothesis that there is competition between CTL responses directed against different epitopes in HIV infection. This suggests that vaccines that elicit broad responses would be favourable because they would direct a larger total response against the virus, in addition to being more robust to the effects of CTL escape.  相似文献   

6.
T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1. Trial registration: ClinicalTrials.gov NCT00849680, A Study of Safety, Tolerability, and Immunogenicity of the MRKAd5 Gag/Pol/Nef Vaccine in Healthy Adults.  相似文献   

7.
A human immunodeficiency virus (HIV)-preventive vaccine will likely need to induce broad immunity that can recognize antigens expressed within circulating strains. To understand the potentially relevant responses that T-cell based vaccines should elicit, we examined the ability of T cells from early infected persons to recognize a broad spectrum of potential T-cell epitopes (PTE) expressed by the products encoded by the HIV type 1 (HIV-1) nef gene, which is commonly included in candidate vaccines. T cells were evaluated for gamma interferon (IFN-gamma) secretion using two peptide panels: subtype B consensus (CON) peptides and a novel peptide panel providing 70% coverage of PTE in subtype B HIV-1 Nef. Eighteen of 23 subjects' T cells recognized HIV-1 Nef. In one subject, Nef-specific T cells were detected with the PTE but not with the CON peptides. The greatest frequency of responses spanned Nef amino acids 65 to 103 and 113 to 147, with multiple epitope variants being recognized. Detection of both the epitope domain number and the response magnitude was enhanced using the PTE peptides. On average, we detected 2.7 epitope domains with the PTE peptides versus 1.7 domains with the CON peptides (P = 0.0034). The average response magnitude was 2,169 spot-forming cells (SFC)/10(6) peripheral blood mononuclear cells (PBMC) with the PTE peptides versus 1,010 SFC/10(6) PBMC with CON peptides (P = 0.0046). During early HIV-1 infection, Nef-specific T cells capable of recognizing multiple variants are commonly induced, and these responses are readily detected with the PTE peptide panel. Our findings suggest that Nef responses induced by a given vaccine strain before HIV-1 exposure may be sufficiently broad to recognize most variants within subtype B HIV-1.  相似文献   

8.
According to a number of previous reports, control of HIV replication in humans appears to be linked to the presence of anti-HIV-1 Gag-specific CD8 responses. During the chronic phase of HIV-1 infection, up to 75% of the HIV-infected individuals who express the histocompatibility leukocyte Ag (HLA)-A*0201 recognize the Gag p17 SLYNTVATL (aa residues 77-85) epitope (SL9). However, the role of the anti-SL9 CD8 CTL in controlling HIV-1 infection remains controversial. In this study we determined whether the pattern of SL9 immunodominance in uninfected, HLA-A*0201 HIV vaccine recipients is similar to that seen in chronically HIV-infected subjects. The presence of anti-SL9 responses was determined using a panel of highly sensitive cellular immunoassays, including peptide:MHC tetramer binding, IFN-gamma ELISPOT, and cytokine flow cytometry. Thirteen HLA-A*0201 vaccinees with documented anti-Gag CD8 CTL reactivities were tested, and none had a detectable anti-SL9 response. These findings strongly suggest that the pattern of SL9 epitope immunodominance previously reported among chronically infected, HLA-A*0201-positive patients is not recapitulated in noninfected recipients of Gag-containing canarypox-based candidate vaccines and may be influenced by the relative immunogenicity of these constructs.  相似文献   

9.
We developed antigen microarrays to profile the breadth, strength, and kinetics of epitope-specific antiviral antibody responses in vaccine trials with a simian-human immunodeficiency virus (SHIV) model for human immunodeficiency virus (HIV) infection. These arrays contained 430 distinct proteins and overlapping peptides spanning the SHIV proteome. In macaques vaccinated with three different DNA and/or recombinant modified vaccinia virus Ankara (rMVA) vaccines encoding Gag-Pol or Gag-Pol-Env, these arrays distinguished vaccinated from challenged macaques, identified three novel viral epitopes, and predicted survival. Following viral challenge, anti-SHIV antibody responses ultimately converged to target eight immunodominant B-cell regions in Env regardless of vaccine regimen, host histocompatibility type, and divergent T-cell specificities. After challenge, responses to nonimmunodominant epitopes were transient, while responses to dominant epitopes were gained. These data suggest that the functional diversity of anti-SHIV B-cell responses is highly limited in the presence of persisting antigen.  相似文献   

10.
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.  相似文献   

11.
Many recombinant poxviral vaccines are currently in clinical trials for cancer and infectious diseases. However, these agents have failed to generate T cell responses specific for recombinant gene products at levels comparable with T cell responses associated with natural viral infections. The recent identification of vaccinia-encoded CTL epitopes, including a new epitope described in this study, allows the simultaneous comparison of CTL responses specific for poxviral and recombinant epitopes. We performed detailed kinetic analyses of CTL responses in HLA-A*0201 patients receiving repeated injections of recombinant modified vaccinia Ankara encoding a string of melanoma tumor Ag epitopes. The vaccine-driven CTL hierarchy was dominated by modified vaccinia Ankara epitope-specific responses, even in patients who had not received previous smallpox vaccination. The only recombinant epitope that was able to impact on the CTL hierarchy was the melan-A26-35 analog epitope, whereas responses specific for the weaker affinity epitope NY-ESO-1(157-165) failed to be expanded above the level detected in prevaccination samples. Our results demonstrate that immunodominant vaccinia-specific CTL responses limit the effectiveness of poxviruses in recombinant vaccination strategies and that more powerful priming strategies are required to overcome immunodominance of poxvirus-specific T cell responses.  相似文献   

12.
The phenomenon whereby the host immune system responds to only a few of the many possible epitopes in a foreign protein is termed immunodominance. Immunodominance occurs not only during microbial infection but also following vaccination, and clarification of the underlying mechanism may permit the rational design of vaccines which can circumvent immunodominance, thereby inducing responses to all epitopes, dominant and subdominant. Here, we show that immunodominance affects DNA vaccines and that the effects can be avoided by the simple expedient of epitope separation. DNA vaccines encoding isolated dominant and subdominant epitopes induce equivalent responses, confirming a previous demonstration that coexpression of dominant and subdominant epitopes on the same antigen-presenting cell (APC) is central to immunodominance. We conclude that multiepitope DNA vaccines should comprise a cocktail of plasmids, each with its own epitope, to allow maximal epitope dispersal among APCs. In addition, we demonstrate that subdominant responses are actively suppressed by dominant CD8(+) T-cell responses and that gamma interferon (IFN-gamma) is required for this suppression. Furthermore, priming of CD8(+) T cells to a single dominant epitope results in strong suppression of responses to other normally dominant epitopes in immunocompetent mice, in effect rendering these epitopes subdominant; however, responses to these epitopes are increased 6- to 20-fold in mice lacking IFN-gamma. We suggest that, in agreement with our previous observations, IFN-gamma secretion by CD8(+) T cells is highly localized, and we propose that its immunosuppressive effect is focused on the APC with which the dominant CD8(+) T cell is in contact.  相似文献   

13.
Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.  相似文献   

14.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

15.
16.
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.  相似文献   

17.
CD8(+) T cells are essential for host defense to intracellular bacterial pathogens such as Mycobacterium tuberculosis (Mtb), Salmonella species, and Listeria monocytogenes, yet the repertoire and dominance pattern of human CD8 antigens for these pathogens remains poorly characterized. Tuberculosis (TB), the disease caused by Mtb infection, remains one of the leading causes of infectious morbidity and mortality worldwide and is the most frequent opportunistic infection in individuals with HIV/AIDS. Therefore, we undertook this study to define immunodominant CD8 Mtb antigens. First, using IFN-gamma ELISPOT and synthetic peptide arrays as a source of antigen, we measured ex vivo frequencies of CD8(+) T cells recognizing known immunodominant CD4(+) T cell antigens in persons with latent tuberculosis infection. In addition, limiting dilution was used to generate panels of Mtb-specific T cell clones. Using the peptide arrays, we identified the antigenic specificity of the majority of T cell clones, defining several new epitopes. In all cases, peptide representing the minimal epitope bound to the major histocompatibility complex (MHC)-restricting allele with high affinity, and in all but one case the restricting allele was an HLA-B allele. Furthermore, individuals from whom the T cell clone was isolated harbored high ex vivo frequency CD8(+) T cell responses specific for the epitope, and in individuals tested, the epitope represented the single immunodominant response within the CD8 antigen. We conclude that Mtb-specific CD8(+) T cells are found in high frequency in infected individuals and are restricted predominantly by HLA-B alleles, and that synthetic peptide arrays can be used to define epitope specificities without prior bias as to MHC binding affinity. These findings provide an improved understanding of immunodominance in humans and may contribute to a development of an effective TB vaccine and improved immunodiagnostics.  相似文献   

18.
DNA vaccines have been successful in eliciting potent immune responses in mice. Their efficiency, however, is restricted in larger animals. One reason for the limited performance of the DNA vaccines is the lack of molecular strategies to enhance immune responses. Additionally, genes directly cloned from pathogenic organisms may not be efficiently translated in a heterologous host expression system as a consequence of codon bias. To evaluate the influence of codon optimization on the immune response, we elected to use the Tat antigens of human immunodeficiency virus type 1 (HIV-1) (subtype C) and HIV-2, as these viral antigens are poorly immunogenic in natural infection and in experimental immunization and they are functionally important in viral infectivity and pathogenesis. Substituting codons that are optimally used in the mammalian system, we synthetically assembled Tat genes and compared them with the wild-type counterparts in two different mouse strains. Codon-optimized Tat genes induced qualitatively and quantitatively superior immune responses as measured in a T-cell proliferation assay, enzyme-linked immunospot assay, and chromium release assay. Importantly, while the wild-type genes promoted a mixed Th1-Th2-type cytokine profile, the codon-optimized genes induced a predominantly Th1 profile. Using a pepscan strategy, we mapped an immunodominant T-helper epitope to the core and basic domains of HIV-1 Tat. We also identified cross-clade immune responses between HIV-1 subtype B and C Tat proteins mapped to this T-helper epitope. Developing molecular strategies to optimize the immunogenicity of DNA vaccines is critical for inducing strong immune responses, especially to antigens like Tat. Our identification of a highly conserved T-helper epitope in the first exon of HIV-1 Tat of subtype C and the demonstration of a cross-clade immune response between subtypes B and C are important for a more rational design of an HIV vaccine.  相似文献   

19.
Adoptive transfer studies have shown that cytotoxic T lymphocytes (CTL) of high avidity, capable of recognizing low levels of peptide-MHC I molecules, are more efficient at reducing viral titers than are low-avidity CTL, thus establishing CTL avidity as a critical parameter for the ability of a CTL to clear virus in vivo. It has been well documented that CTL of high avidity are relatively CD8 independent, whereas low-avidity CTL require CD8 engagement in order to become activated. In this study we have analyzed the antiviral CTL response elicited following infection with the paramyxovirus simian virus 5 (SV5). We have identified the immunodominant and subdominant CTL responses and subsequently assessed the avidity of these responses by their CD8 dependence. This is the first study in which the relationship between immunodominance and CTL avidity has been investigated. The immunodominant response was directed against an epitope present in the viral M protein, and subdominant responses were directed against epitopes present in the P, F, and HN proteins. Similarly to other CTL responses we have analyzed, the immunodominant response and the subdominant F and HN responses were comprised of both high- and low-avidity CTL. However, the subdominant response directed against the epitope present in the P protein is novel, as it is exclusively high avidity. This high-avidity response is independent of both the route of infection and expression by recombinant SV5. A further understanding of the inherent properties of P that elicit only high-avidity CTL may allow for the design of more efficacious vaccine vectors that preferentially elicit high-avidity CTL in vivo.  相似文献   

20.
Immunodominance hierarchies operating in immune responses to viral Ags limit the diversity of the elicited CD8 T cell responses. We evaluated in I-A(b+)/A2-HHD-II and HLA-DR1(+)/A2-DR1 mice the HLA-A*0201-restricted, multispecific CD8 T cell responses to the human CMV tegument phosphoprotein pp65 (pp65) Ag. Vaccination of mice with pp65-encoding DNA elicited high IFN-γ(+) CD8 T cell frequencies to the pp65(495-503)/(e6) epitope and low responses to the pp65(320-328)/(e3) and pp65(522-530)/(e8) epitopes. Abrogation of the e6-specific immunity efficiently enhanced e3- and e8-specific T cell responses by a pp65(Δ501-503) DNA vaccine. The immunodominant e6-specific (but not the e3- and e8-specific) CD8 T cell response critically depends on CD4 T cell help. Injection of monospecific DNA- or peptide-based vaccines encoding the e3 or e8 (but not the e6) epitope into mice elicited CD8 T cells. Codelivering the antigenic peptides with different heterologous CD4 T cell helper epitopes enhanced e6-specific (but not e3- or e8-specific) CD8 T cell responses. Similarly, homologous CD4 T cell help, located within an overlapping (nested) pp65(487-503) domain, facilitated induction of e6-specific CD8 T cell responses by peptide-based vaccination. The position of the e6 epitope within this nested domain is not critical to induce the immunodominant, e6-specific CD8 T cell response to the pp65 Ag. Distant CD4 T cell epitope(s) can thus provide efficient help for establishing pp65-e6 immunodominance in vaccinated mice. These results have practical implications for the design of new T cell-stimulating vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号