首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

A prospective analysis of the distribution of NK subsets and natural cytotoxicity receptors (NKp30/NKp46) in HIV patients with long-term HAART use and sustained virological and immunological response.

Methods

The main inclusion criteria were: at least 3 years’ receipt of HAART; current CD4+ count ≥ 500 cells/mm3; undetectable viral load for at least 24 months; no hepatotropic virus co-infection. Percentages of CD56dim, CD56bright NK cells and CD56neg CD16+ cells were obtained. Expression of the NCRs, NKp30 and NKp46 was analysed in CD56+ cells. Thirty-nine infected patients and sixteen healthy donors were included in the study.

Results

The percentages of total CD56+ and CD56dim NK cells were significantly lower in HIV-infected patients than in healthy donors (70.4 vs. 50.3 and 80.9 vs. 66.1 respectively). The percentage of total CD56+ NK cells expressing NCR receptors was lower in HIV patients than in healthy donors (NKp30: 25.20 vs. 58.63; NKp46: 24.8 vs. 50.59). This was also observed for CD56dim and CD56bright NK cells. Length of time with undetectable HIV viral load was identified as an independent factor associated with higher expression of NKp30 and NKp46.

Conclusion

Despite the prolonged and effective use of HAART, HIV-infected patients do not fully reconstitute the distribution of NK cells. Length of time with an undetectable viral load was related to greater recovery of NKp30/NKp46 receptors.  相似文献   

2.
3.

Background

FcRγ is an immunoreceptor tyrosine-based activation motif (ITAM)-signalling protein essential for immunoreceptor signaling and monocyte, macrophage and NK cell function. Previous study from our laboratory showed that FcRγ is down-regulated in HIV-infected macrophages in vitro. FcRγ expression in immune cells present in HIV-infected individuals is unknown.

Methodology/Principal Findings

We compared FcRγ expression in peripheral blood mononuclear cells isolated from HIV-1-infected individuals receiving combination antiretroviral therapy and healthy, HIV-1-uninfected individuals. FcRγ mRNA and protein levels were measured using quantitative real-time PCR and immunoblotting, respectively. CD56+ CD94+ lymphocytes isolated from blood of HIV-1 infected individuals had reduced FcRγ protein expression compared to HIV-uninfected individuals (decrease = 76.8%, n = 18 and n = 12 respectively, p = 0.0036). In a second group of patients, highly purified NK cells had reduced FcRγ protein expression compared to uninfected controls (decrease = 50.2%, n = 9 and n = 8 respectively, p = 0.021). Decreased FcRγ expression in CD56+CD94+ lymphocytes was associated with reduced mRNA (51.7%, p = 0.021) but this was not observed for the smaller group of patients analysed for NK cell expression (p = 0.36).

Conclusion/Significance

These data suggest biochemical defects in ITAM-dependent signalling within NK cells in HIV-infected individuals which is present in the context of treatment with combination antiretroviral therapy.  相似文献   

4.

Background

CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation.

Methods

We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed.

Results

Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV.

Conclusions

Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41.  相似文献   

5.

Background

There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3-) cells and NKT-like (CD56+CD3+) cells.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies.

Results

The proportion of peripheral blood NKT-like (CD56+CD3+) cells in smokers with COPD (COPD subjects) was significantly lower (0.6%) than in healthy smokers (smokers) (2.8%, p < 0.001) and non-smoking healthy participants (HNS) (3.3%, p < 0.001). NK (CD56+CD3-) cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p < 0.001) as were NKT-like (CD56+CD3+) cells (16.7% vs 52.4% specific lysis, p < 0.001). Both cell types had lower proportions expressing both perforin and granzyme B. Blocking the action of perforin and granzyme B reduced the cytotoxic activity of NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells from smokers and HNS.

Conclusion

In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells in COPD subjects are reduced and that their cytotoxic effector function is defective.  相似文献   

6.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

7.

Background

Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown.

Methods

Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants.

Results

All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD.

Conclusions

These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.  相似文献   

8.

Background

Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.

Methods

In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses.

Results

CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.

Conclusions

These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.  相似文献   

9.

Background

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease. It is thought to be mediated by CD4+ Th1/Th17 cells. More recently, cells of the innate immune system such as dendritic cells (DCs) and natural killer (NK) cells have been in focus. Glatiramer acetate (GA) is an approved drug for treating MS patients.

Methodology/Principal Findings

In the current study we examined the activities of NK and DCs in nine relapsing remitting MS patients for up to one year after initiation of GA treatment. We observed that NK cells isolated from most of these patients have increased cytotoxic activity against K562 cells. Further analysis showed that the same NK cells lysed both autologous immature (i) and mature (m) DCs. In most patients this increased activity was correlated with increased NK cell activating cytotoxicity receptors such as NKp30, NKp44, NKp46 and NKG2D, and reduced expression of the inhibitory molecule CD158 on the surface of these NK cells. The expression of HLA-DR was increased on iDCs and mDCs in the majority of the patients, but no consistency was observed for the expression of HLA-I or HLA-E. Also, the co-stimulatory receptors CD80, CD83 or CD86 expression was down-regulated on iDCs and mDCs in most cases. Further, the expression of CCR6 was increased on mDCs at later time points of therapy (between 32–48 weeks).

Conclusions/Significance

Our results are the first showing the effects of GA treatment on NK cells in MS patients, which may impact future use of this and other drugs to treat this disease.  相似文献   

10.
X Xu  Q Wang  B Deng  H Wang  Z Dong  X Qu  B Kong 《PloS one》2012,7(7):e41869

Background

Decidual stromal cells (DSCs) are of particular importance due to their pleiotropic functions during pregnancy. Although previous research has demonstrated that DSCs participated in the regulation of immune cells during pregnancy, the crosstalk between DSCs and NK cells has not been fully elucidated. To address this issue, we investigated the effect of DSCs on perforin expression in CD56+ NK cells and explored the underlying mechanism.

Methodology/Principal Findings

Flow cytometry analysis showed perforin production in NK cells was attenuated by DSC media, and it was further suppressed by media from DSCs pretreated with lipopolysaccharide (LPS). However, the expression of granzyme A and apoptosis of NK cells were not influenced by DSC media. ELISA assays to detect cytokine production indicated that monocyte chemoattractant protein-1 (MCP-1) in the supernatant of DSCs conditioned culture significantly increased after LPS stimulation. The inhibitory effect of DSC media on perforin was abolished by the administration of anti-MCP-1 neutralizing antibody. Notably, reduced perforin expression attenuated the cytotoxic potential of CD56+NK cells to K562 cells. Moreover, Suppressor of cytokine signaling 3 (SOCS3) expression in NK cells was enhanced by treatment with MCP-1, as measured by RT-PCR and western blot. Interestingly, MCP-1-induced perforin expression was partly abolished by the siRNA induced SOCS3 knockdown. Western blot analysis suggested that both NF-κB and ERK/MAPKs pathway were involved in the LPS-induced upregulation of MCP-1 in DSCs.

Conclusions/Significance

Our results demonstrate that LPS induces upregulation of MCP-1 in DSCs, which may play a critical role in inhibiting the cytotoxicity of NK cells partly by promoting SOCS3 expression. These findings suggest that the crosstalk between DSCs and NK cells may be crucial to maintain pregnancy homeostasis.  相似文献   

11.

Background

We have previously shown that NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.

Methods

Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56+ cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.

Results

The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing both perforin and granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56+ cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV1. (r = -0.75; p = 0.0098).

Conclusion

We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.  相似文献   

12.

Background

The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer.

Methodology/Principal Findings

Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G2/M phase.

Conclusion/Significance

These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands.  相似文献   

13.

Background

In mouse models, natural killer (NK) cells have been shown to exert anti-fibrotic activity via killing of activated hepatic stellate cells (HSC). Chemokines and chemokine receptors critically modulate hepatic recruitment of NK cells. In hepatitis C, the chemokine receptor CXCR3 and its ligands have been shown to be associated with stage of fibrosis suggesting a role of these chemokines in HCV associated liver damage by yet incompletely understood mechanisms. Here, we analyzed phenotype and function of CXCR3 expressing NK cells in chronic hepatitis C.

Methods

Circulating NK cells from HCV-infected patients (n = 57) and healthy controls (n = 27) were analyzed with respect to CXCR3 and co-expression of different maturation markers. Degranulation and interferon-γ secretion of CXCR3(+) and CXCR3(−) NK cell subsets were studied after co-incubation with primary human hepatic stellate cells (HSC). In addition, intra-hepatic frequency of CXCR3(+) NK cells was correlated with stage of liver fibrosis (n = 15).

Results

We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. In healthy controls CXCR3(+)CD56Bright NK cells displayed strongest activity against HSC. Chronic hepatitis C was associated with a significantly increased frequency of CXCR3(+)CD56Bright NK cells which showed impaired degranulation and impaired IFN-γ secretion in response to HSC. Of note, we observed intra-hepatic accumulation of this NK cell subset in advanced stages of liver fibrosis.

Conclusion

We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. Intra-hepatic accumulation of the functionally impaired CXCR3(+)CD56Bright NK cell subset might be involved in HCV-induced liver fibrosis.  相似文献   

14.

Background

NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated.

Methodology/Principal Findings

Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of “NK-ireg” cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34+ PB-HP. Finally, a small subset of NKp46+ HLA-G+ IL-10+ is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells.

Conclusions/Significance

In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56+ CD16+ NKp30+ NKp44+ NKp46+ CD94+ CD69+ CCR7+) generated from specific pSTAT6+ GATA3+ precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells.  相似文献   

15.

Background

NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands.

Methodology/Principal Findings

We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2Dhigh or NK30high donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies.

Conclusions/Significance

NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities.  相似文献   

16.

Objective

Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease.

Methods

Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot.

Results

We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154.

Conclusion

Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.  相似文献   

17.

Objective

Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.

Methods

Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.

Results

There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.

Conclusions

Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.  相似文献   

18.

Introduction

Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity.

Methods

We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses.

Results

In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003).

Conclusions

In patients with antibiotic-responsive arthritis, the high percentage of activated, IFN-γ-producing CD56bright NK cells in SF and the presence of iNKT cells suggest that these cells still have a role in spirochetal killing late in the illness. In patients with antibiotic-refractory arthritis, the frequencies of IFN-γ-producing CD56bright and CD56dim NK cells remained high in SF, even after spirochetal killing, suggesting that these cells contribute to excessive inflammation and immune dysregulation in joints, and iNKT cells, which may have immunomodulatory effects, were often absent.  相似文献   

19.

Rationale

Natural killer cells, as a major source of interferon-γ, contribute to the amplification of the inflammatory response as well as to mortality during severe sepsis in animal models.

Objective

We studied the phenotype and functions of circulating NK cells in critically-ill septic patients.

Methods

Blood samples were taken <48 hours after admission from 42 ICU patients with severe sepsis (n = 15) or septic shock (n = 14) (Sepsis group), non-septic SIRS (n = 13) (SIRS group), as well as 21 healthy controls. The immuno-phenotype and functions of NK cells were studied by flow cytometry.

Results

The absolute number of peripheral blood CD3–CD56+ NK cells was similarly reduced in all groups of ICU patients, but with a normal percentage of NK cells. When NK cell cytotoxicity was evaluated with degranulation assays (CD107 expression), no difference was observed between Sepsis patients and healthy controls. Under antibody-dependent cell cytotoxicity (ADCC) conditions, SIRS patients exhibited increased CD107 surface expression on NK cells (62.9[61.3–70]%) compared to healthy controls (43.5[32.1–53.1]%) or Sepsis patients (49.2[37.3–62.9]%) (p = 0.002). Compared to healthy (10.2[6.3–13.1]%), reduced interferon-γ production by NK cells (K562 stimulation) was observed in Sepsis group (6.2[2.2–9.9]%, p<0.01), and especially in patients with septic shock. Conversely, SIRS patients exhibited increased interferon-γ production (42.9[30.1–54.7]%) compared to Sepsis patients (18.4[11.7–35.7]%, p<0.01) or healthy controls (26.8[19.3–44.9]%, p = 0.09) in ADCC condition.

Conclusions

Extensive monitoring of the NK-cell phenotype and function in critically-ill septic patients revealed early decreased NK-cell function with impaired interferon-γ production. These results may aid future NK-based immuno-interventions.

Trial Registration

NTC00699868.  相似文献   

20.

Background

Terminal differentiation of NK cells is crucial in maintaining broad responsiveness to pathogens and discriminating normal cells from cells in distress. Although it is well established that KIRs, in conjunction with NKG2A, play a major role in the NK cell education that determines whether cells will end up competent or hyporesponsive, the events underlying the differentiation are still debated.

Methodology/Principal Findings

A combination of complementary approaches to assess the kinetics of the appearance of each subset during development allowed us to obtain new insights into these terminal stages of differentiation, characterising their gene expression profiles at a pan-genomic level, their distinct surface receptor patterns and their prototypic effector functions. The present study supports the hypothesis that CD56dim cells derive from the CD56bright subset and suggests that NK cell responsiveness is determined by persistent inhibitory signals received during their education. We report here the inverse correlation of NKG2A expression with KIR expression and explore whether this correlation bestows functional competence on NK cells. We show that CD56dimNKG2AKIR+ cells display the most differentiated phenotype associated to their unique ability to respond against HLA-E+ target cells. Importantly, after IL-12 + IL-18 stimulation, reacquisition of NKG2A strongly correlates with IFN-γ production in CD56dimNKG2A NK cells.

Conclusions/Significance

Together, these findings call for the reclassification of mature human NK cells into distinct subsets and support a new model, in which the NK cell differentiation and functional fate are based on a stepwise decrease of NKG2A and acquisition of KIRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号