首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation initiated by dedifferentiation and proliferation of renal tubular epithelial cells. Renal tubular epithelial cells (RTC, derived from normal kidney tissue) in primary cultures exhibit both homogeneous expression of γ-glutamyl transferase and low molecular weight cytokeratin, two different markers for proximal and distal renal epithelial cells, respectively. RTC in cultures also abnormally express the dedifferentiation markers vimentin and PAX-2, which are proteins normally expressed in epithelial cells lining cysts in ADPKD kidneys but not tubular cells in normal kidneys. In contrast, different cultures of cystic epithelial cells (CEC, derived from the cysts walls of polycystic kidneys) display variable expression of cytokeratin, γ-glutamyl transferase, and PAX-2, but a constant level of vimentin. Importantly, RTC and CEC exhibit the capacity to convert to their respective original structures by forming tubules and cysts, respectively, when cultured in a three-dimensional gel matrix, whereas HK-2, LLC-PK1, and MDCK renal epithelial cell lines form cell aggregates or cysts. Our study demonstrates that the marker expression of the various epithelial cell types is not highly stable in primary cultures. Their modulation is different in cells originating from normal and ADPKD kidneys and in cells cultured in monolayer and three-dimensions. These results indicate the plasticity of epithelial cells that display a mixed epithelial/dedifferentiated/mesenchymal phenotype during their expansion in culture. However, RTC and CEC morphogenic epithelial properties in three-dimensional cultures are similar to those in vivo. Thus, this model is useful for studying the mechanisms leading to tubulogenesis and cystogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by a grant from The Polycystic Kidney Foundation. We gratefully acknowledge the support of the Children’s Medical Research Institute and Children’s Miracle Network Foundation.  相似文献   

2.
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

3.
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin+ and CD133/1+ cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1+ cells. Isolated CD133/1+ papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1+ progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

4.
The cellular origin of trisomy 7 in non-neoplastic kidney tissue specimens from 10 patients, seven with malignant tumors and three with non-neoplastic kidney diseases, was studied by the MAC (morphology antibody chromosomes) technique, which allows analysis of cellular morphology/histology, immunophenotype, and chromosomal aneuploidy by conventional cytogenetics, and/or fluorescent in situ hybridization in both interphase and mitotic cells. In primary cultures, trisomy 7 was detected primarily in cytokeratin-positive cells. Among freshly isolated renal cells, the trisomy was mainly observed in proximal tubular cells positive to brush-border antigen, and, to a lesser extent, in distal tubular cells positive to Tamm-Horsfall glycoprotein. The frequency of trisomy 7 in lymphocytes expressing CD3 or CD22 antigens isolated from non-neoplastic and tumor tissues was substantially lower than in the epithelial cells and was not increased compared with that in control lymphocytes from peripheral blood. The results thus demonstrate that the non-neoplastic kidney cells with trisomy 7 are mainly normal epithelial cells, preferentially those of the proximal tubule.  相似文献   

5.
Fetal kidney cells may contain multiple populations of kidney stem cells and thus appear to be a suitable cellular therapy for the treatment of acute renal failure (ARF) but their biological characteristics and therapeutic potential have not been adequately explored. We have culture expanded fetal kidney cells derived from rat fetal kidneys, characterized them and evaluated their therapeutic effect in an ischemia reperfusion (IR) induced rat model of ARF. The fetal kidney cells grew in culture as adherent spindle shaped/polygonal cells and expressed CD29, CD44, CD73, CD90, CD105, CD24 and CD133 markers. Administration of PKH26 labeled fetal kidney cells in ARF rats resulted in a significant decrease in the levels of blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin and decreased tubular necrosis in the kidney tissues (p<0.05 for all). The injected fetal kidney cells were observed to engraft around injured tubular cells, and there was increased proliferation and decreased apoptosis of tubular cells in the kidneys (p<0.05 for both). In addition, the kidney tissues of ARF rats treated with fetal kidney cells had a higher gene expression of renotropic growth factors (VEGF-A, IGF-1, BMP-7 and bFGF) and anti-inflammatory cytokine (IL10); up regulation of anti-oxidative markers (HO-1 and NQO-1); and a lower Bax/Bcl2 ratio as compared to saline treated rats (p<0.05 for all). Our data shows that culture expanded fetal kidney cells express mesenchymal and renal progenitor markers, and ameliorate ischemic ARF predominantly by their anti-apoptotic, anti-inflammatory and anti-oxidative effects.  相似文献   

6.
7.
BACKGROUND: Increased expression of the connective tissue polysaccharide hyaluronan (HA) in the renal corticointerstitium is associated with progressive renal fibrosis. Numerous studies have demonstrated involvement proximal tubular epithelial cells in the fibrotic process and in the current study we have characterised their expression of the HA receptor, CD44, and examined changes in CD44 expression and function in response to either IL-1beta or glucose. METHODS: Characterisation of CD44 splice variant expression was carried out in primary cultures of human proximal tubular cells (PTC) and HK2 cells. Binding and internalisation HA was examined by addition of exogenous of fluorescein-HA (fl-HA), and expression of CD44 examined by immunoblot analysis and flow cytometry. Alteration in "functional" CD44 was determined by immunoprecipitation of CD44 following stimulation in the presence of fl-HA. RESULTS: PTC, both primary culture and the PTC cell line, HK2, express at least 5 CD44 splice variants, the expression of which are not altered by addition of either IL-1beta or 25mM D-glucose. Addition of either stimulus increased cell surface binding and internalisation of fl-HA and increased expression of functionally active CD44. Increased binding and internalisation of fl-HA, was blocked by anti-CD44 antibody, and by the inhibition of O-glycosylation. CONCLUSIONS: The data demonstrate that stimuli inducing PTC HA synthesis also regulate PTC-HA interactions. Furthermore increased HA binding and internalisation is the result of post-translational modification of CD44 by O-glycosylation, rather than by alteration in expression of CD44 at the cell surface, or by alternate use of CD44 splice variants.  相似文献   

8.
We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.  相似文献   

9.
Aminopeptidase N (APN, CD13) and dipeptidyl peptidase IV (DPP IV, CD26) are transmembrane ectoenzymes occurring in a wide variety of cells. They are involved in tumour cell invasion and the formation of metastases. A basis for further information about these enzymes is the exact ultrastructural localization in normal and malignant cells. In this paper, we demonstrate the precise subcellular localization of the membrane peptidases APN and DPP IV on the cell surfaces in renal tissues, renal cell carcinoma, cultured renal parenchymal cells and cultured renal carcinoma cells. Using cryo-ultramicrotomy of weakly fixed tissues and cells in combination with indirect immunogold labelling, both membrane peptidases were detectable on the external cell surfaces. They showed different ultrastructural expression patterns. Both membrane peptidases were abundantly labelled on the external cell surfaces of human kidney proximal tubular cells. The expression pattern of APN/CD13 and DPP IV/CD26 in single labelling was confirmed by a successive double labelling technique. The immunolabelling of CD13 on cultured renal parenchymal cells showed a stronger expression then in cells in vivo, but CD26 could not be found. In renal cell cancer (mixed clear cell/chromophilic, poorly differentiated and clear cell type, moderately differentiated) CD13 and CD26 were labelled as in benign renal tissue, but CD26 appeared overexpressed. On the renal carcinoma cells Caki-1 and Caki-2, only one of the two peptidases could be found. CD13 was present non-homogeneously in Caki-1, where the enzyme appeared to form clusters. When CD26 on the cultured renal carcinoma cells Caki-2, is compared with renal proximal tubular cells and renal carcinoma cells in tissue sections, a reduced expression is observed. CD13 was not detected in Caki-2, and CD26 was not found in Caki-1. These small changes on the cell surfaces can only be detected by electronmicroscopic methods. The differences in the distribution of APN/CD13 and DPP IV/CD26 in normal and malignant cells are discussed in connection with literature. Further investigations, especially labelling studies on other neoplastic tissues and cells, will be necessary in order to explain the precise role these membrane peptidases in malignancies.  相似文献   

10.
11.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

12.
Objectives: Mesenchymal–epithelial interactions play a pivotal role in tubular morphogenesis and in maintaining the integrity of the kidney. During renal repair, similar mechanisms may regulate cellular reorganization and differentiation. We have hypothesized that soluble factors from proximal tubular epithelial cells (PTC) induce differentiation of adipose-derived adult mesenchymal stem cells (ASC). This hypothesis has been tested using cultured ASC and PTC.
Material and methods: Conditioned medium was prepared from injured PTC and transferred to ASC cultures. ASC proliferation was analysed by a fluorometric and photometric assay. Signal transduction was analysed by phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2). Grade of ASC differentiation was assessed by morphological analysis and cell expression of characteristic markers.
Results: Conditioned medium significantly induced proliferation and phosphorylation of ERK1/ERK2 of ASC. After 12 days of incubation, cell morphology changed to an epithelial-like monolayer. Expression of cytokeratin 18 was induced by conditioned medium, while α-smooth muscle actin, CD49a and CD90 expression decreased. These alterations strongly indicate onset of the differentiation process to the epithelial lineage. In summary, soluble factors from PTC induce signal transduction and differentiation of ASC.
Conclusions: Our study shows that conditioned medium from renal tubular epithelial cells provides a convenient source of inductive signals to initiate differentiation of ASC towards epithelial lineage. We deduce that these interactions may play an important role during renal repair mechanisms.  相似文献   

13.
14.
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end-stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co-expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA-seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine-derived renal progenitor cells and human kidney-derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single-cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co-expressed gene set compared with other human renal–derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.  相似文献   

15.
Direct functional screening of a cDNA expression library derived from primary porcine alveolar macrophages (PAM) revealed that CD163 is capable of conferring a porcine reproductive and respiratory syndrome virus (PRRSV)-permissive phenotype when introduced into nonpermissive cells. Transient-transfection experiments showed that full-length CD163 cDNAs from PAM, human U937 cells (histiocytic lymphoma), African green monkey kidney cells (MARC-145 and Vero), primary mouse peritoneal macrophages, and canine DH82 (histocytosis) cells encode functional virus receptors. In contrast, CD163 splice variants without the C-terminal transmembrane anchor domain do not provide PRRSV receptor function. We established several stable cell lines expressing CD163 cDNAs from pig, human, and monkey, using porcine kidney (PK 032495), feline kidney (NLFK), or baby hamster kidney (BHK-21) as the parental cell lines. These stable cell lines were susceptible to PRRSV infection and yielded high titers of progeny virus. Cell lines were phenotypically stable over 80 cell passages, and PRRSV could be serially passed at least 60 times, yielding in excess of 10(5) 50% tissue culture infective doses/ml.  相似文献   

16.
《Autophagy》2013,9(5):710-712
One of the major side effects of cisplatin chemotherapy is toxic acute kidney injury due to preferential accumulation of cisplatin in renal proximal tubule epithelial cells and the subsequent injury to these cells. Apoptosis is known as a major mechanism of cisplatin-induced cell death in renal tubular cells. We have also recently demonstrated that autophagy induction is an immediate response of renal tubular epithelial cell exposure to cisplatin. Inhibition of cisplatin-induced autophagy blocks the formation of autophagosomes and enhances cisplatin-induced caspase-3, -6, and -7 activation, nuclear fragmentation, and apoptosis. The switch from autophagy to apoptosis by autophagic inhibitors suggests that autophagy induction was responsible for a pre-apoptotic lag phase observed on exposure of renal tubular cells to cisplatin. Our studies provide evidence that autophagy induction in response to cisplatin mounts an adaptive response that suppresses and delays apoptosis. The beneficial effect of autophagy has a potential clinical significance in minimizing or preventing cisplatin nephrotoxicity.

Addedum to: Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy and apoptosis are associated in cisplatin injury to renal tubular epithelial cell injury. Am J Physiol Renal Physiol 2008; 294:F777-87.  相似文献   

17.
The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs) in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules.Key words: Acute tubular necrosis, tubular regeneration, species diversity, proximal tubules  相似文献   

18.
Renal ischemia-reperfusion injury, a major cause of renal failure, always leads to acute kidney injury and kidney fibrosis. MicroRNAs (miRs) have been reported to be associated with renal ischemia-reperfusion injury. miR-194 was downregulated following renal ischemia-reperfusion injury; however, the function and mechanism of miR-194 in renal ischemia-reperfusion injury have not yet been fully understood. In the present study, we constructed renal ischemia-reperfusion injury model in vitro through treatment of human kidney proximal tubular epithelial cells HK-2 by hypoxia/reperfusion (H/R). We observed that miR-194 was decreased in H/R-induced HK-2 cells. miR-194 mimic increased H/R-induced HK-2 cell survival, whereas miR-194 inhibitor further strengthened H/R- inhibited HK-2 cell survival. Also, we observed that miR-194 overexpression suppressed oxidative stress markers, including malondialdehyde, glutathione, and secretion of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α; however, miR-194 inhibitor showed the reverse effects. Results from dual-luciferase analysis confirmed that Ras homology enriched in brain (Rheb) was a direct target of miR-194. Finally, we corroborated that miR-194 affected cell growth, oxidative stress, and inflammation through targeting Rheb in H/R-induced HK-2 cells. In conclusion, our results suggested that miR-194 protect against H/R-induced injury in HK-2 cells through direct targeting Rheb.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号