首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Recently the reduction of the retinal nerve fibre layer (RNFL) was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS) patients. However, several points are still under discussion. (1) Is high resolution optical coherence tomography (OCT) required to detect the partly very subtle RNFL changes seen in MS patients? (2) Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3) Does an optic neuritis (ON) or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients with high resolution OCT technique.

Methodology

Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT) using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts), for color vision (Lanthony D-15), the Humphrey visual field and visual evoked potential testing (VEP).

Principal Findings

All 4 groups (RRMS and SPMS with or without ON) showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9–540 months).

Conclusions

RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels).  相似文献   

2.

Background

Optical coherence tomography (OCT) is a simple, high-resolution technique to quantify the thickness of retinal nerve fiber layer (RNFL), which provides an indirect measurement of axonal damage in multiple sclerosis (MS). This study aimed to evaluate RNFL thickness in patients at presentation with clinically isolated syndromes (CIS) suggestive of MS.

Methodology

This was a cross-sectional study. Twenty-four patients with CIS suggestive of MS (8 optic neuritis [ON], 6 spinal cord syndromes, 5 brainstem symptoms and 5 with sensory and other syndromes) were prospectively studied. The main outcome evaluated was RNFL thickness at CIS onset. Secondary objectives were to study the relationship between RNFL thickness and MRI criteria for disease dissemination in space (DIS) as well as the presence of oligoclonal bands in the cerebrospinal fluid.

Principal Findings

Thirteen patients had decreased RNFL thickness in at least one quadrant. Mean RNFL thickness was 101.67±10.72 µm in retrobulbar ON eyes and 96.93±10.54 in unaffected eyes. Three of the 6 patients with myelitis had at least one abnormal quadrant in one of the two eyes. Eight CIS patients fulfilled DIS MRI criteria. The presence of at least one quadrant of an optic nerve with a RNFL thickness at a P<5% cut-off value had a sensitivity of 75% and a specificity of 56% for predicting DIS MRI.

Conclusions

The findings from this study show that axonal damage measured by OCT is present in any type of CIS; even in myelitis forms, not only in ON as seen up to now. OCT can detect axonal damage in very early stages of disease and seems to have high sensitivity and moderate specificity for predicting DIS MRI. Studies with prospective long-term follow-up would be needed to establish the prognostic value of baseline OCT findings.  相似文献   

3.

Background

Microcystic macular edema (MME) and inner nuclear layer thickening (INL) were described in multiple sclerosis (MS) and neuromyelitis optica (NMO) patients using optical coherence tomography (OCT). The cause of these findings is currently unknown and a relation to inflammatory or degenerative processes in the optic nerve is discussed.

Objective

The aim of our study was to investigate whether INL thickening and MME are related to optic neuritis (ON) in various neuro-inflammatory disorders causingON: MS, NMO and chronic inflammatory optic neuropathy.

Methods

We retrospectively analyzed data from 216 MS patients, 39 patients with a clinically isolated syndrome, 20 NMO spectrum disorder patients, 9 patients with chronic inflammatory optic neuropathy and 121 healthy subjects. Intra-retinal layer segmentation was performed for the eyes of patients with unilateral ON. Scanning laser ophthalmoscopy (SLO) images were reviewed for characteristic ocular fundus changes.

Results

Intra-retinal layer segmentation showed that eyes with a history of ON displayed MME independent INL thickening compared to contralateral eyes without previous ON. MME was detected in 22 eyes from 15 patients (5.3% of all screened patients), including 7 patients with bilateral edema. Of these, 21 had a prior history of ON (95%). The SLO images of all 22 MME-affected eyes showed crescent-shaped texture changes which were visible in the perifoveal region. A second grader who was blinded to the results of the OCT classified all SLO images for the presence of these characteristic fundus changes. All MME eyes were correctly classified (sensitivity = 100%) with high specificity (95.2%).

Conclusion

This study shows that both MME and INL thickening occur in various neuro-inflammatory disorders associated with ON. We also demonstrate that detection and analysis of MME by OCT is not limited to B-scans, but also possible using SLO images.  相似文献   

4.

Objective

To evaluate macular morphology in the eyes of patients with multiple sclerosis (MS) with or without optic neuritis (ON) in previous history.

Methods

Optical coherence tomography (OCT) examination was performed in thirty-nine patients with MS and in thirty-three healthy subjects. The raw macular OCT data were processed using OCTRIMA software. The circumpapillary retinal nerve fiber layer (RNFL) thickness and the weighted mean thickness of the total retina and 6 intraretinal layers were obtained for each eye. The eyes of MS patients were divided into a group of 39 ON-affected eyes, and into a group of 34 eyes with no history of ON for the statistical analyses. Receiver operating characteristic (ROC) curves were constructed to determine which parameter can discriminate best between the non-affected group and controls.

Results

The circumpapillary RNFL thickness was significantly decreased in the non-affected eyes compared to controls group only in the temporal quadrant (p = 0.001) while it was decreased in the affected eyes of the MS patients in all quadrants compared to the non-affected eyes (p<0.05 in each comparison). The thickness of the total retina, RNFL, ganglion cell layer and inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, comprising the RNFL and GCL+IPL) in the macula was significantly decreased in the non-affected eyes compared to controls (p<0.05 for each comparison) and in the ON-affected eyes compared to the non-affected eyes (p<0.001 for each comparison). The largest area under the ROC curve (0.892) was obtained for the weighted mean thickness of the GCC. The EDSS score showed the strongest correlation with the GCL+IPL and GCC thickness (p = 0.007, r = 0.43 for both variables).

Conclusions

Thinning of the inner retinal layers is present in eyes of MS patients regardless of previous ON. Macular OCT image segmentation might provide a better insight into the pathology of neuronal loss and could therefore play an important role in the diagnosis and follow-up of patients with MS.  相似文献   

5.
6.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   

7.

Purpose

To compare the abilities of peripapillary retinal nerve fiber layer (RNFL) parameters of spectral domain optical coherence tomograph (SDOCT) and scanning laser polarimeter (GDx enhanced corneal compensation; ECC) in detecting preperimetric glaucoma.

Methods

In a cross-sectional study, 35 preperimetric glaucoma eyes (32 subjects) and 94 control eyes (74 subjects) underwent digital optic disc photography and RNFL imaging with SDOCT and GDx ECC. Ability of RNFL parameters of SDOCT and GDx ECC to discriminate preperimetric glaucoma eyes from control eyes was compared using area under receiver operating characteristic curves (AUC), sensitivities at fixed specificities and likelihood ratios (LR).

Results

AUC of the global average RNFL thickness of SDOCT (0.786) was significantly greater (p<0.001) than that of GDx ECC (0.627). Sensitivities at 95% specificity of the corresponding parameters were 20% and 8.6% respectively. AUCs of the inferior, superior and temporal quadrant RNFL thickness parameters of SDOCT were also significantly (p<0.05) greater than the respective RNFL parameters of GDx ECC. LRs of outside normal limits category of SDOCT parameters ranged between 3.3 and 4.0 while the same of GDx ECC parameters ranged between 1.2 and 2.1. LRs of within normal limits category of SDOCT parameters ranged between 0.4 and 0.7 while the same of GDx ECC parameters ranged between 0.7 and 1.0.

Conclusions

Abilities of the RNFL parameters of SDOCT and GDx ECC to diagnose preperimetric glaucoma were only moderate. Diagnostic abilities of the RNFL parameters of SDOCT were significantly better than that of GDx ECC in preperimetric glaucoma.  相似文献   

8.

Purpose

Optical coherence tomography (OCT) allows quantification of the thickness of the retinal nerve fibre layer (RNFL) thickness, a potential biomarker for neurodegeneration. The estimated annual RNFL loss in multiple sclerosis amounts to 2 μm using time domain OCT. The recognition of measurement artifacts exceeding this limit is relevant for the successful use of OCT as a secondary outcome measure in clinical trials.

Methods

Prospective study design. An exploratory pilot study (ring and volume scans) followed by a cohort study (1,980 OCT ring scans). The OCT measurement beam was placed off–axis to the left, right, top and bottom of the subjects pupil and RNFL thickness of these scans were compared to the centrally placed reference scans.

Results

Off–axis placement of the OCT measurement beam resulted in significant artifacts in RNFL thickness measurements (95%CI 9μm, maximal size of error 42μm). Off–axis placement gave characteristic patterns of the OCT live images which are not necessarily saved for review. Off–axis placement also causes regional inhomogeneity of reflectivity in the outer nuclear (ONL) and outer plexiform layers (OPL) which remains visible on scans saved for review.

Conclusion

Off–axis beam placement introduces measurement artifacts at a magnitude which may mask recognition of RNFL loss due to neurodegeneration in multiple sclerosis. The resulting pattern in the OCT live image can only be recognised by the technician capturing the scans. Once the averaged scans have been aligned this pattern is lost. Retrospective identification of this artifact is however possible by presence of regional inhomogeneity of ONL/OPL reflectivity. This simple and robust sign may be considered for quality control criteria in the setting of multicentre OCT studies. The practical advice of this study is to keep the OCT image in the acquisition window horizontally aligned whenever possible.  相似文献   

9.

Purpose

To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO).

Methods

AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3–4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created.

Results

AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001). RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001)

Conclusions

AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.  相似文献   

10.

Purpose

To evaluate the ability of normative database classification (color-coded maps) of spectral domain optical coherence tomograph (SDOCT) in detecting wedge shaped retinal nerve fiber layer (RNFL) defects identified on photographs and the factors affecting the ability of SDOCT in detecting these RNFL defects.

Methods

In a cross-sectional study, 238 eyes (476 RNFL quadrants) of 172 normal subjects and 85 eyes (103 RNFL quadrants with wedge shaped RNFL defects) of 66 glaucoma patients underwent RNFL imaging with SDOCT. Logistic regression models were used to evaluate the factors associated with false positive and false negative RNFL classifications of the color-coded maps of SDOCT.

Results

False positive classification at a p value of <5% was seen in 108 of 476 quadrants (22.8%). False negative classification at a p value of <5% was seen in 16 of 103 quadrants (15.5%). Of the 103 quadrants with RNFL defects, 64 showed a corresponding VF defect in the opposite hemisphere and 39 were preperimetric. Higher signal strength index (SSI) of the scan was less likely to have a false positive classification (odds ratio: 0.97, p = 0.01). Presence of an associated visual field defect (odds ratio: 0.17, p = 0.01) and inferior quadrant RNFL defects as compared to superior (odds ratio: 0.24, p = 0.04) were less likely to show false negative classifications.

Conclusions

Scans with lower signal strengths were more likely to show false positive RNFL classifications, and preperimetric and superior quadrant RNFL defects were more likely to show false negative classifications on color-coded maps of SDOCT.  相似文献   

11.

Purpose

To diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using the ‘Random Forests’ method.

Methods

SD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT parameters including thickness measurements of circumpapillary retinal nerve fiber layer (cpRNFL), the macular RNFL (mRNFL) and the ganglion cell layer-inner plexiform layer combined (GCIPL). The area under the receiver operating characteristic curve (AROC) was calculated using the Random Forests method adopting leave-one-out cross validation. For comparison, AROCs were calculated based on each one of the 151 OCT parameters.

Results

The AROC obtained with the Random Forests method was 98.5% [95% Confidence interval (CI): 97.1–99.9%], which was significantly larger than the AROCs derived from any single OCT parameter (maxima were: 92.8 [CI: 89.4–96.2] %, 94.3 [CI: 91.1–97.6] % and 91.8 [CI: 88.2–95.4] % for cpRNFL-, mRNFL- and GCIPL-related parameters, respectively; P<0.05, DeLong’s method with Holm’s correction for multiple comparisons). The partial AROC above specificity of 80%, for the Random Forests method was equal to 18.5 [CI: 16.8–19.6] %, which was also significantly larger than the AROCs of any single OCT parameter (P<0.05, Bootstrap method with Holm’s correction for multiple comparisons).

Conclusions

The Random Forests method, analyzing multiple SD-OCT parameters concurrently, significantly improves the diagnosis of glaucoma compared with using any single SD-OCT measurement.  相似文献   

12.

Background/Objective

In addition to cirrhosis of the liver, Wilson’s disease leads to copper accumulation and widespread degeneration of the nervous system. Delayed visual evoked potentials (VEPs) suggest changes to the visual system and potential structural changes of the retina.

Methods

We used the latest generation of spectral domain optical coherence tomography to assess the retinal morphology of 42 patients with Wilson’s disease and 76 age- and sex-matched controls. We measured peripapillary retinal nerve fiber layer (RNFL) thickness and total macular thickness and manually segmented all retinal layers in foveal scans of 42 patients with Wilson’s disease and 76 age- and sex-matched controls. The results were compared with VEPs and clinical parameters.

Results

The mean thickness of the RNFL, paramacular region, retinal ganglion cell/inner plexiform layer and inner nuclear layer was reduced in Wilson’s disease. VEPs were altered with delayed N75 and P100 latencies, but the N140 latency and amplitude was unchanged. An analysis of the laboratory parameters indicated that the serum concentrations of copper and caeruloplasmin positively correlated with the thickness of the outer plexiform layer and with N75 and P100 VEP latencies.

Conclusion

Neuronal degeneration in Wilson’s disease involves the retina and changes can be quantified by optical coherence tomography. While the VEPs and the thickness of the outer plexiform layer appear to reflect the current copper metabolism, the thicknesses of the RNFL, ganglion cell/inner plexiform layer, inner nuclear layer and the total paramacular thickness may be the best indicators of chronic neuronal degeneration.  相似文献   

13.

Purpose

Measurement of intra-retinal layer thickness using optical coherence tomography (OCT) has become increasingly prominent in multiple sclerosis (MS) research. Nevertheless, the approaches used for determining the mean layer thicknesses vary greatly. Insufficient data exist on the reliability of different thickness estimates, which is crucial for their application in clinical studies. This study addresses this lack by evaluating the repeatability of different thickness estimates.

Methods

Studies that used intra-retinal layer segmentation of macular OCT scans in patients with MS were retrieved from PubMed. To investigate the repeatability of previously applied layer estimation approaches, we generated datasets of repeating measurements of 15 healthy subjects and 13 multiple sclerosis patients using two OCT devices (Cirrus HD-OCT and Spectralis SD-OCT). We calculated each thickness estimate in each repeated session and analyzed repeatability using intra-class correlation coefficients and coefficients of repeatability.

Results

We identified 27 articles, eleven of them used the Spectralis SD-OCT, nine Cirrus HD-OCT, two studies used both devices and two studies applied RTVue-100. Topcon OCT-1000, Stratus OCT and a research device were used in one study each. In the studies that used the Spectralis, ten different thickness estimates were identified, while thickness estimates of the Cirrus OCT were based on two different scan settings. In the simulation dataset, thickness estimates averaging larger areas showed an excellent repeatability for all retinal layers except the outer plexiform layer (OPL).

Conclusions

Given the good reliability, the thickness estimate of the 6mm-diameter area around the fovea should be favored when OCT is used in clinical research. Assessment of the OPL was weak in general and needs further investigation before OPL thickness can be used as a reliable parameter.  相似文献   

14.

Background

To investigate the hemodynamic characteristics of glaucoma eyes with disc hemorrhage (DH) by disc fluorescein angiography, and its relationship with glaucomatous changes of the optic disc and surrounding retinal nerve fiber layer (RNFL).

Methods

This study included 35 glaucoma eyes with DH who were followed up at least 5 years and had DH at presentation. Eyes were classified as eyes with DH at the border of localized RNFL defects and eyes with DH not related to localized RNFL defects. Prevalence of DH and location of the proximal border were recorded from disc photographs. Fluorescein angiography was performed 3 months after detecting the DH. Arm-retina time, arteriovenous transit time, disc filling time, choroidal filling time, and venous filling time were measured as retinal circulation parameters. The presence of disc filling defects and disc leaks were evaluated.

Results

There were 19 (54.3%) eyes with DH accompanying localized RNFL defects. The arm-retina time was prolonged in eyes with DH not related to RNFL defects (P = 0.044) and the arteriovenous transit time was prolonged in eyes with DH accompanying RNFL defects (P = 0.029). Among eyes with DH accompanying RNFL defects, 11 (57.9%) had vessel filling defects or delayed filling indicating blood flow stasis at the cup margin proximal to where DH occurred. Eyes with DH not related to RNFL defects did not show vessel filling defects or delayed filling.

Conclusions and Relevance

Eyes with DH related to RNFL defects showed prolonged arteriovenous transit time and had frequent vessel filling defects or delayed filling indicating blood flow stasis and thrombus formation at the site DH occurred. These findings suggest that vascular and hemodynamic changes due to glaucomatous structural changes cause DH in relation to localized RNFL defects.  相似文献   

15.

Aim

To examine the relationship between retinal ganglion cell loss and changes in the inner nuclear layer (INL) in optic neuritis (ON).

Methods

36 multiple sclerosis (MS) patients with a history of ON and 36 age and sex-matched controls underwent Optical Coherence Tomography. The paramacular retinal nerve fiber layer (RNFL), combined ganglion cell and inner plexiform layers (GCL/IPL) and inner nuclear layer (INL) thickness were measured at 36 points around the fovea. To remove inter-subject variability, the difference in thickness of each layer between the ON and fellow eye of each patient was calculated. A topographic analysis was conducted.

Results

The INL of the ON patients was thicker than the controls (42.9µm versus 39.6µm, p=0.002). ON patients also had a thinner RNFL (27.8µm versus 32.2µm, p<0.001) and GCL/IPL (69.3µm versus 98.1µm, p<0.001). Among the controls, there was no correlation between RNFL and GCL/IPL as well as RNFL and INL, but a positive correlation was seen between GCL/IPL and INL (r=0.65, p<0.001). In the ON group, there was a positive correlation between RNFL and GCL/IPL (r=0.80, p<0.001) but a negative correlation between RNFL and INL (r=-0.61, p<0.001) as well as GCL/IPL and INL (r=-0.44, p=0.007). The negative correlation between GCL/IPL and INL strengthened in the ON group when inter-subject variability was removed (r=-0.75, p<0.001). Microcysts within the INL were present in 5 ON patients, mainly in the superior and infero-nasal paramacular regions. While patients with microcysts lay at the far end of the correlation curve between GCL/IPL and INL (i.e. larger INL and smaller GCL/IPL compared to other patients), their exclusion did not affect the correlation (r= -0.76, p<0.001).

Conclusions

INL enlargement in MS-related ON is associated with the severity of GCL loss. This is a continuous relationship and patients with INL microcysts may represent the extreme end of the scale.  相似文献   

16.

Purpose

To use novel confocal scanning ophthalmoscopy technology to test hypothesis that HIV-seropositive patients without history of retinitis with a history of a low CD4 count are more likely to have damage to their retinal nerve fiber layer (RNFL) when compared to patients with high CD4 count. In addition, we compared optic disc morphologic changes with glaucoma.

Design

Cross-sectional study.

Participants and Controls

171 patients were divided into four groups. The control group consisted of 40 eyes of 20 HIV-seronegative patients. The second group consisted of 80 eyes of 41 HIV-positive patients whose CD4 cell count never dropped below 100 (1.0 x 109/L). The third group consisted of 44 eyes of 26 HIV-positive patients with a history of low CD4 counts <100. Fourth group consisted of 79 eyes of 79 patients with confirmed glaucoma who served as positive controls.

Testing

Confocal scanning laser ophthalmoscopy was performed with the Heidelberg Retina Tomograph (HRT3) and data were analyzed with HRT3, software (Heyex version 1.5.10.0).

Main Outcome Measures

Disc area, cup area, cup volume, rim volume, mean cup depth, maximum cup depth, cup-to-disc ration, mean RNFL thickness, and RNFL cross-sectional area.

Results

Analysis of the global optic nerve and cup parameters showed no difference in disk area among the four groups. There was also no difference in cup, rim volume, mean cup depth, or maximum cup depth among the first three groups but they were all different from glaucoma group. The RNFL was thinner in glaucoma and both HIV-positive groups compared to HIV-seronegative subjects. The cross sectional RNFL area was thinner in both high and low CD4 HIV-positive groups compared to HIV-seronegative group in the nasal and temporal/inferior sectors, respectively. Glaucoma group showed thinning in all sectors.

Conclusions

HIV retinopathy results in retinal nerve fiber layer loss without structural optic nerve supportive tissue change. RNFL damage may occur early in HIV disease by mechanism different than in glaucoma.  相似文献   

17.

Purpose

The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis.

Methods

Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values.

Results

Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001).

Conclusions

Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies.  相似文献   

18.

Background

Multiple sclerosis (MS) and neuromyelitis optica (NMO) occasionally have an extremely aggressive and debilitating disease course; however, its molecular basis is unknown. This study aimed to determine a relationship between connexin (Cx) pathology and disease aggressiveness in Asian patients with MS and NMO.

Methods/Principal Findings

Samples included 11 autopsied cases with NMO and NMO spectrum disorder (NMOSD), six with MS, and 20 with other neurological diseases (OND). Methods of analysis included immunohistochemical expression of astrocytic Cx43/Cx30, oligodendrocytic Cx47/Cx32 relative to AQP4 and other astrocytic and oligodendrocytic proteins, extent of demyelination, the vasculocentric deposition of complement and immunoglobulin, and lesion staging by CD68 staining for macrophages. Lesions were classified as actively demyelinating (n=59), chronic active (n=58) and chronic inactive (n=23). Sera from 120 subjects including 30 MS, 30 NMO, 40 OND and 20 healthy controls were examined for anti-Cx43 antibody by cell-based assay. Six NMO/NMOSD and three MS cases showed preferential loss of astrocytic Cx43 beyond the demyelinated areas in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte oligodendrocyte gap junctions were extensively lost. Cx43 loss was significantly associated with a rapidly progressive disease course as six of nine cases with Cx43 loss, but none of eight cases without Cx43 loss regardless of disease phenotype, died within two years after disease onset (66.7% vs. 0%, P=0.0090). Overall, five of nine cases with Cx43 loss and none of eight cases without Cx43 loss had distal oligodendrogliopathy characterized by selective myelin associated glycoprotein loss (55.6% vs. 0.0%, P=0.0296). Loss of oligodendrocytic Cx32 and Cx47 expression was observed in most active and chronic lesions from all MS and NMO/NMOSD cases. Cx43-specific antibodies were absent in NMO/NMOSD and MS patients.

Conclusions

These findings suggest that autoantibody-independent astrocytic Cx43 loss may relate to disease aggressiveness and distal oligodendrogliopathy in both MS and NMO.  相似文献   

19.

Objectives

Dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis has frequently been reported in multiple sclerosis (MS). So far, HPA axis function in MS has predominantly been studied under pharmacological stimulation which is associated with a series of methodological caveats. Knowledge of circadian cortisol patterns and cortisol awakening response (CAR) is still limited.

Methods

A total of 77 MS patients (55 relapsing-remitting MS (RRMS)/22 secondary-progressive MS (SPMS)) as well as 34 healthy control (HC) subjects were enrolled. Diurnal cortisol release was assessed by repeated salivary cortisol sampling. Neurological disability was rated by the Kurtzke’s Expanded Disability Status Scale (EDSS). Depressive symptoms and perceived stress were assessed by self-report measures.

Results

RRMS but not SPMS patients differed in circadian cortisol release from HC subjects. Differences in cortisol release were restricted to CAR. Treated and treatment naïve RRMS patients did not differ in CAR. In a RRMS follow-up cohort (nine months follow-up), RRMS patients with EDSS progression (≥0.5) expressed a significantly greater CAR compared to HC subjects. RRMS patients with a stable EDSS did not differ from HC subjects. Neither depressive symptoms nor perceived stress ratings were associated with CAR in RRMS patients. In a step-wise regression analysis, EDSS at baseline and CAR were predictive of EDSS at follow-up (R2 = 67%) for RRMS patients.

Conclusions

Circadian cortisol release, in particular CAR, shows a course specific pattern with most pronounced release in RRMS. There is also some evidence for greater CAR in RRMS patients with EDSS progression. As a consequence, CAR might be of predictive value in terms of neurological disability in RRMS patients. The possible role of neuroendocrine-immune interactions in MS pathogenesis is further discussed.  相似文献   

20.

Objective

To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as “radiologically isolated syndrome” (RIS).

Methods

Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex.

Results

LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values.

Conclusions

Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号