首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The G2 block is a major response of cells to DNA damage and seem to be induced independently of p53 status. It is thought that the G2 block has a protective function and allows cells to repair their DNA. The molecular events involved in the formation of the G2 block therefore are of great interest. We have used pentoxifylline, a potent G2 delay abrogator, to study the expression of an essential component of the mitosis promoting complex (MPF), cyclin B1. Cyclin B1/G2 ratios are used to show that irradiation induces a decrease in cyclin B1 expression and that pentoxifylline restores cyclin B1 expression to control level. This confirms that suppression of cyclin B1 plays a role in the formation of the G2 cell cycle delay, and that elevating cyclin B1 expression is part of the mechanism of action of pentoxifylline on G2 blocked cells.  相似文献   

2.
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1/G0 phase, and a recently described G2+ M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3, and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2+ M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells.  相似文献   

3.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

4.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

5.
Abstract Stationary-phase cells of Cryptococcus neoformans displayed two morphological characteristics: virtually all the cells were unbudded even in the early stationary phase and even when grown in rich media, and average cell size increased from that of exponential-phase cells. DNA contents for small and large stationary-phase cells were determined by quantitative fluorescence microscopy after DNA staining with propidium iodide or DAPI. Small cells contained G, DNA, whereas large unbudded cells had either a G2 or G1 DNA content, indicating that Cr. neoformans can enter into the stationary phase from either the G1 or G2 period.  相似文献   

6.
Unscheduled expression of cyclins D1 and D3 in human tumour cell lines   总被引:2,自引:0,他引:2  
D-type cyclins are involved in regulation of cell traverse through G1 primarily by activating the cyclin-dependent kinase 4 (CDK4) and targeting it to the retinoblastoma tumour suppressor protein. There is a vast body of evidence that defective expression of D-type cyclins is associated with tumour development and/or progression. Immunocytochemical detection of D cyclins combined with multiparameter flow cytometry makes it possible to measure the expression of these proteins in individual cells in relation to their cell cycle position without the need for cell synchronization. This approach was used in the present study to compare the cell cycle phase specific expression of cyclins D3 and D1 in human normal proliferating lymphocytes and fibroblasts, respectively, with nine tumour cell lines of different lineage. During exponential, unperturbed growth, expression of cyclin D1 in fibroblasts from donors of different age, or cyclin D3 in lymphocytes, was limited to mid-G1 cells: Less than 7% of the cells entering S phase or progressing through S and G2 were cyclin D positive. In contrast, expression of either cyclin D1 or cyclin D3 in tumour cell lines of different lineage was not limited to G1 phase. Namely, over 80% of the cells in S and G2+M were cyclin D positive in eight of the nine cell lines studied. The data indicate that while expression of cyclin D1 or D3 in normal cells is discontinuous, occurring transiently in G1, these proteins are expressed in some tumour lines persistently throughout the cell cycle. This suggests that the partner kinase CDK4 is perpetually active throughout the cell cycle in these tumour lines.  相似文献   

7.
Abstract. Tape stripping of human skin elicits a proliferative response of a synchronously-dividing group of cells. The progress of this cohort of cells has been monitored using two windows in the cell cycle, one located in mid-S phase and the other centred around G2+ M. The cellular DNA is measured with flow cytometry, the windows are defined by two ranges in the DNA histogram.
The cohort can be described as the recruitment of cells from a pre-existing G0 compartment which consists of 76% of all proliferative cells. The duration of the S phase is calculated to be 10.2 hr and G2+ M phase 5.1 hr. The cell cycle time of 39 hr for normal human keratinocytes derived from these figures is in line with recent values obtained by different techniques.  相似文献   

8.
Synchronization of mammalian cells by starvation-refeeding or by inhibition-release are among the most commonly used techniques for division cycle analysis. An alternative analysis—in the form of a Gedanken or thought experiment—is presented, casting doubt on the utility of this synchronization method. Arresting cell growth produces a culture where all cells contain a G1 amount of DNA. However, these cells are not arrested at a particular point in the G1-phase. Analysis of 'G1 arrested cells' suggests that, upon resumption of growth, the cells are not synchronized.  相似文献   

9.
10.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

11.
12.
13.
Full-grown amphibian oocytes that had been arrested at meiotic prophase I contained an activity that prevented the cell cycle from progressing beyond a G2-like stage. Injection of the contents of germinal vesicles (GV-content) or cytoplasm obtained from oocytes of the frog Rana rugosa prevented fertilized eggs of Cynops pyrrhogaster or Bufo japonicus from cleaving. The nuclei in the arrested eggs consisted of thin chromosomes and nucleolus-like particles enclosed within clear nuclear membrane and their volume increased as a function of time after injection. Cycling of maturation-promoting factor (MPF) did not occur in the injected eggs, but DNA synthesis was not disturbed. The injection of exogenous MPF into the eggs induced the reinitiation of the cell cycle with progression to the M phase and subsequent cleavage. Furthermore, the injection into the full-grown oocytes of Bufo inhibited induction of the maturation of oocytes by progesterone. These results demonstrate that a factor that arrests the cell cycle either at a G2-like stage of mitosis or at prophase in meiosis is present both in the GV and cytoplasm of frog oocytes. We refer to this factor as a G2-specific cytostatic factor (G2-CSF). G2-CSF may play an important role not only in the physiological arrest at prophase I in meiosis, but also in regulation of the G2/M transition in the cell cycle of early embryonic cells.  相似文献   

14.
Abstract.  The influence of temperature on the insect cell line, BmN, derived from the silkworm, Bombyx mori is investigated. These cells proliferate at an accelerated pace as the temperature increases from 22 to 30 °C, but the growth rate slows at 34 °C, and proliferation stops at 38 °C. At high temperatures, abnormal cellular morphology is observed. Cells treated at 38 °C have cytoplasmic bilateral protrusions and they gradually aggregate and float in the medium. BmN cells without proliferation at 38 °C are viable but have reduced DNA synthesis. At high temperatures, the cell cycle of BmN cells halts at the G2 phase. After heat treatment of the larvae, an accumulation of larval haemocytes with high DNA content is found, which suggests that the cell cycle arrest at G2 also occurs in the silkworm at high temperatures.  相似文献   

15.
Abstract. Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. the retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. the repair curves (surviving fraction us time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

16.
Abstract: Nociceptin/OFQ is the endogenous ligand for the G protein-coupled opioid receptor-like (ORL1) receptor. To elucidate the cellular functions of the ORL1 receptor, we examined its ability to interact with Gz and G16, two pertussis toxin (PTX)-insensitive G proteins that are known molecular partners for the opioid receptors. In HEK 293 cells transiently expressing the ORL1 and dopamine D1 receptors, nociceptin/OFQ dose-dependently inhibited dopamine-stimulated cyclic AMP (cAMP) accumulation in a PTX-sensitive manner. However, PTX failed to block the nociceptin/OFQ-induced inhibition of dopamine-stimulated cAMP accumulation in HEK 293 cells co-expressing the α-subunit of Gz. This result indicates functional interaction between the ORL1 receptor and Gz. A similar result was obtained with retinoic acid-differentiated SH-SY5Y cells, which endogenously express both the ORL1 receptor and Gz. When the ORL1 receptor was transiently co-expressed in COS-7 cells with the α-subunit of G16, nociceptin/OFQ dose-dependently stimulated the formation of inositol phosphates. Nociceptin-induced stimulation of phospholipase C was absolutely dependent on the co-expression of α16 and exhibited the appropriate ligand selectivity. In terms of its ability to interact with PTX-insensitive G proteins, the ORL1 receptor behaves very much like the opioid receptors.  相似文献   

17.
A mathematical model integrating the roles of cyclin D, cdk4, cyclin E, cdk2, E2F and RB in control of the G1 phase of the cell cycle is described. Experimental results described with murine embryo fibroblasts (MEFs), either Rb+/+ or Rb−/−, and with the RB-deficient osteosarcoma cell line, Saos-2, served as the basis for the formulation of this mathematical model. A model employing the known interactions of these six proteins does not reproduce the experimental observations described in the MEFs. The appropriate modelling of G1 requires the inclusion of a sensing mechanism which adjusts the activity of cyclin E/cdk2 in response to both RB concentration and growth factors. Incorporation of this sensing mechanism into the model allows it to reproduce most of the experimental results observed in Saos-2 cells, Rb−/− MEFS, and Rb+/+ MEFs. The model also makes specific predictions which have not been tested experimentally.  相似文献   

18.
Experiments in mice on the fraction of haemopoietic stem cells in S-phase after irradiation indicated that a large fraction of the cells resting in G0 will enter S-phase after a very short interval of time.
After excluding alternative explanations it must be concluded that cells in G0 have completed all preparations for going into S-phase or, in other words, that the localization of these G0 cells in relation to other phases of the cell cycle must be between G1 and S-phase.  相似文献   

19.
The progression of cells from G2 into mitosis is mainly controlled by formation of the cyclin B1/p34cdc2 complex. The behaviour of this complex in the irradiation-induced G2 cell cycle delay is still unclear. A prior study demonstrated that the expression of the cyclin B1 protein is reduced by irradiation, and restored to control levels by the methylxanthine drug pentoxifylline, which is a potent G2 block abrogator. The present study shows that irradiation, and 2 mM pentoxifylline affect the expression of the cyclin-dependent kinase p34cdc2 in HeLa cells. Irradiation induces p34cdc2 levels to increase and cyclin B1 levels to decrease. Addition of pentoxifylline at the G2 maximum reverses these trends. This is also evident from the cyclin B1/p34cdc2 ratios which decline after irradiation and are rapidly restored to control levels upon addition of pentoxifylline. It is concluded that cyclin B1 and p34cdc2 protein expression are important events and act in concert to control the irradiation induced G2 block. Analysis of cyclin B1 expression in whole cells and in isolated nuclei furthermore show that cyclin B1 is translocated from the nucleus into the cytoplasm when the G2 block is abrogated by pentoxifylline.  相似文献   

20.
Abstract. A population of line CHO Chinese hamster cells was synchronized by mitotic selection and allowed to enter early G1, after which the largest and smallest cells in the population were sorted, irradiated, and their viability determined. Despite sizeable differences in volume, metabolic capability and cell cycle progression rates, an equivalent level of survival was obtained for the two populations, indicating that the factors responsible for the volume, metabolic and progression heterogeneity do not contribute greatly to radiation sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号