首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tea is one of the most widely consumed beverages, second only to water. Many experimental researches in laboratory animals demonstrated that tea components had an inhibitory effect on carcinogenesis at a number of organ sites. The inhibitory effects of tea against carcinogenesis have been attributed to the biologic activities of the polyphenol fraction in tea. This review summarizes experimental data on chemopreventive effects of tea polyphenols in various tumor bioassay systems. Many laboratory studies have demonstrated the inhibitory effects of green tea polyphenols, especially (-)-epigallocatechin-3-gallate (EGCG), on carcinogenesis in animals models. The majority of these studies have been conducted in mouse skin tumor models, where tea polyphenols were used either as oral feeding in drinking water or in direct local application. Most studies used 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV) radiation as the tumor promoter and found anticarcinogenic effects caused by green tea polyphenols. Black tea was also found to be effective, although the activity was weaker than that of green tea in some experiments. Other studies showed that black tea polyphenols-theaflavins exhibited stronger anticarcinogenic activity than did EGCG. Caffeine in tea was also important for tea to prevent tumorigenesis. The molecular mechanisms of the cancer chemopreventive effects of tea polyphenols are not completely understood. They are most likely related to the mechanisms of biochemical actions of tea polyphenols, which include antioxidative activities, modulation of xenobiotic metabolite enzymes and inhibition of tumor promotion. In addition, we have also proposed that tea polyphenols function as cancer chemopreventive agents through modulation of mitotic signal transduction. However, the molecular mechanisms involved in this modulation need further investigation.  相似文献   

2.
Tea is the most popular beverage next to water, consumed by over two-thirds of the world's population. It is processed in different ways in different parts of the world to give green, black or oolong tea. Experimental studies have demonstrated the significant antimutagenic and anticlastogenic effects of both green and black tea and its polyphenols in multiple mutational assays. In the present review, we have attempted to evaluate and update the comparative antimutagenic and anticlastogenic effects of green tea, black tea and their polyphenols in different test systems, based on available literature. Existing reports have suggested that the protective effects of black tea is as good as green tea, however, more studies on black tea and its polyphenols are needed before a final conclusion can be made.  相似文献   

3.
Cooking meat and fish under normal conditions produces heterocyclic amine mutagens, several of which have been shown to induce colon tumors in experimental animals. In our search for natural dietary components that might protect against these mutagens, it was found that green tea and black tea inhibit the formation of heterocyclic amine-induced colonic aberrant crypt foci (ACF) in the rat. Since ACF are considered to be putative preneoplastic lesions, we examined the inhibitory mechanisms of tea against the heterocyclic amines. In the initial studies using the Salmonella mutagenicity assay, green tea and black tea inhibited according to the concentration of tea leaves during brewing and the time of brewing; a 2-3-min brew of 5% green tea (w/v) was sufficient for >90% antimutagenic activity. N-hydroxylated heterocyclic amines, which are direct-acting mutagens in Salmonella, were inhibited by complete tea beverage and by individual components of tea, such as epigallocatechin-3-gallate (EGCG). Inhibition did not involve enhanced mutagen degradation, and EGCG and other catechins complexed only weakly with the mutagens, suggesting electrophile scavenging as an alternative mechanism. Enzymes that contribute to the metabolic activation of heterocyclic amines, namely microsomal NADPH-cytochrome P450 reductase and N, O-acetyltransferase, were inhibited by tea in vitro. Studies in vivo established that tea also induces cytochromes P450 and Phase II enzymes in a manner consistent with the rapid metabolism and excretion of heterocyclic amines. Collectively, the results indicate that tea possesses anticarcinogenic activity in the colon, and this most likely involves multiple inhibitory mechanisms.  相似文献   

4.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

5.
Mechanistic findings of green tea as cancer preventive for humans   总被引:13,自引:0,他引:13  
Based on our initial work with green tea, in which repeated topical applications of (-)-epigallocatechin gallate (EGCG), the main green tea polyphenol, inhibited tumor promotion in a two-stage carcinogenesis experiment on mouse skin (Phytother Res 1, 44-47, 1987), numerous scientists have since provided so much additional evidence of the benefits of drinking green tea that it is now an acknowledged cancer preventive in Japan, and will possibly soon be recognized as such in other countries. Our work has so far produced several important results with EGCG and green tea: a wide range of target organs in animal experiments for cancer prevention, wide bioavailability of 3H-EGCG in various organs of mice, delayed cancer onset of patients with a history of consuming over 10 cups of green tea per day, and absence of any severe adverse effects among volunteers who took 15 green tea tablets per day (2.25 g green tea extracts, 337.5 mg EGCG, and 135 mg caffeine) for 6 months. This paper introduces three new findings: 1) EGCG interacted with the phospholipid bilayer membrane resulting in confirmation of the sealing effect of EGCG; 2) EGCG inhibited TNF-alpha gene expression in the cells and TNF-alpha release from the cells; 3) high consumption of green tea was closely associated with decreased numbers of axillary lymph node metastases among premenopausal Stage I and II breast cancer patients, and with increased expression of progesterone and estrogen receptors among postmenopausal ones. These results provide new insights into our understanding of the mechanisms of action of tea polyphenols and green tea extract as a cancer preventive.  相似文献   

6.
Tea polyphenols, e.g., (-)-epigallocatechin-3-O-(3-O-methyl gallate (EGCG3”Me), (-)-epigallocatechin-3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-O-gallate (ECG), and (-)-epicatechin (EC), are believed to be responsible for the beneficial effects of tea. ‘Benifuuki’, a tea (Camellia sinensis L.) cultivar grown in Japan, is rich in the anti-allergic molecule epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3”Me). Pulverized Benifuuki green tea powder (BGP) is more widely distributed than leaf tea in Japan. Japanese people mix their pulverized tea with water directly, whereas it is common to drink leaf tea after extraction. However, few studies of the effects of BGP particle size on polyphenol bioavailability have been performed. This study was conducted to investigate the absorption of catechins in rats after the intragastric administration of Benifuuki green tea. Therefore, we assessed the plasma concentrations of catechins following the ingestion of BGP with different mean particle sizes (2.86, 18.6, and 76.1 μm) or Benifuuki green tea infusion (BGI) as a control in rats. The bioavailabilities of EGCG3”Me, EGCG, ECG, EGC, and EC were analyzed after the oral administration of a single dose of Benifuuki green tea (125 mg/rat) to rats. The plasma concentrations of tea catechins were determined by HPLC analysis combined with of electrochemical detection (ECD) using a coulometric array. The AUC (area under the drug concentration versus time curve; min μg/mL) of ester-type catechins (EGCG3”Me, EGCG, and ECG) for the BGP 2.86 μm were significantly higher than those in the infusion and 18.6 and 76.1 μm BGP groups, but the AUC of free-type catechins (EGC and EC) showed no differences between these groups. Regarding the peak plasma level of EGCG3”Me adjusted for intake, BGP 2.86 μm and BGI showed higher values than the BGP 18.6 and 76.1 μm groups, and the peak plasma levels of the other catechins displayed the same tendency. The present study demonstrates that the bioavailability of ester-type catechins (EGCG and ECG) can be improved by reducing the particle size of green tea, but the plasma level of EGCG3”Me in the BGI group was similar to that in the BGP 2.86 μm group. This result suggests that drinking Benifuuki green tea with a particle size of around 2 μm would deliver the anti-allergic EGCG3”Me and the anti-oxidant EGCG efficiently.  相似文献   

7.
The main goal of this study was to compare effects of ethanol-soluble fractions prepared from various types of teas on sucrose-induced hyperlipidemia in 5-week old male Sprague-Dawley rats. Rats (n = 6-8 per group) weighed approximately 200 g were randomly divided into control diet, sucrose-rich diet, green tea, oolong tea and black tea groups. Control-diet group was provided with modified AIN-93 diet while the others consumed sucrose-rich diet. Tea extracts (1% w/v) were supplied in the drink for green tea, oolong tea and black tea groups. Results indicated sucrose-rich diet induced hypertriglyceridemia and hypercholesterolemia. Food intake was reduced by oolong tea extract. Consuming oolong and black tea extracts also significantly decreased body weight gains and food efficiency. Hypertriglyceridemia was normalized by green and black tea drink on day 18 and by oolong tea extract on day 25, respectively. Hypercholesterolemia was normalized by green tea on day 18 and by oolong tea and black tea on day 25, respectively. Plasma HDL-cholesterol concentrations were not affected by any tea extract. The triglyeride content in the liver as well as the cholesterol content in the heart of rats fed sucrose-rich diet were elevated and were normalized by all types of tea drink tested. Although green and oolong tea extracts contained similar composition of catechin, our findings suggest green tea exerted greater antihyperlipidemic effect than oolong tea. Apparent fat absorption may be one of the mechanisms by which green tea reduced hyperlipidemia as well as fat storage in the liver and heart of rats consumed sucrose-rich diet.  相似文献   

8.
A dipping method was developed to extract the catechins (EGCG) and alkaloids (caffeine) from green tea (Korea) and black tea (Sri Lanka). The effects of the solvent composition (water vs. ethanol), extraction time, temperatures, and solvent pH on the amount of catechins (EGCG) and alkaloids (caffeine) extracted from green and black tea were investigated. Reversedphase high-performance liquid chromatography (RP-HPLC) was used to analyze the catechins (EGCG) and alkaloids (caffeine) extracted. The content of EGCG and caffeine in green tea extracts was in the range of 2.04∼0.30 and 10.22∼0.85 mg/g, respectively. The amount of EGCG and caffeine in black tea extracts was in the range of 0.32∼0.24 and 5.26∼1.01 mg/g, respectively. The amount of caffeine extracted from green and black tea was greater than the amount of EGCG. Pure water is the best solvent for extracting EGCG and caffeine from green tea. The amount of caffeine extracted from green and black tea increased as the temperature, extraction time, and hydrogen ion concentration of the solvent increased. Although the amount of EGCG extracted from green tea increased as the temperature increased, the amount of EGCG extracted from black tea was not affected by temperature. The extraction of EGCG from both green and black tea was not affected by the hydrogen ion concentration of the solvent.  相似文献   

9.
Yen GC  Ju JW  Wu CH 《Free radical research》2004,38(2):193-200
The protective effects of three tea extracts (green tea, GTE; oolong tea, OTE; and black tea, BTE) and five tea polyphenols (epicatechin, EC; epicatechin gallate, ECG; epigallocatechin, EGC; epigallocatechin gallate, EGCG; and theaflavins, THFs) on benzo[a]pyrene (B[a]P)-induced DNA damage in Chang liver cells were evaluated using the comet assay. B[a]P-induced DNA damage in Chang liver cells was significantly (p < 0.05) inhibited by GTE and OTE at a concentration of 10 microg/ml and by BTE at 25 microg/ml. At a concentration of 100 microg/ml, the % tail DNA was reduced from 33% (B[a]P treated only) to 10, 9, 13%, by GTE, OTE and BTE, respectively. EC and ECG did not cause DNA damage in cells according to the results of the comet assay; however, EGC, EGCG and theaflavins caused DNA damage in cells at a concentration of 100 microM. The results indicated that EC and ECG had protective effects against B[a]P-induced DNA damage in cells at a concentration of 10-100 microM. Although EGC, EGCG and the theaflavins caused DNA damage at a high concentration, but they had protective effects against B[a]P-induced DNA damage in cells at a low concentration of 10-50 microM. The results also showed that the DNA damage in cells induced by EGC, EGCG, and the theaflavins was due to the generation of superoxide during incubation with cells at a higher concentration. Therefore, tea catechins and THFs play an important role in enabling tea extracts to inhibit DNA damage in Chang liver cells.  相似文献   

10.
Cancer therapy and prevention by green tea: role of ornithine decarboxylase   总被引:10,自引:0,他引:10  
Summary. Green tea which is widely consumed in China, Japan and India, contains polyphenolic compounds, which account for 30% of the dry weight of the leaves. Most of the polyphenols are flavanols, of which (−)-epigallocatechin-3-gallate (EGCG) is most abundant. Epidemiological studies revealed that the incidences of stomach and prostate cancers are the lowest in the world among a population that consumes green tea on a regular basis. It has also been reported that the quantity of green tea consumed, plays an important role in reducing cancer risk and in delaying cancer outbreak and recurrence. Various systems were used to confirm anti-cancer activities of green tea and/or EGCG. These included experimental animals in which cancer was induced chemically. Cultured cells transformed chemically or by oncogenes were also used. These studies clearly demonstrated that green tea or EGCG have anticancer and cancer preventive properties. The mechanisms of these activities have also been studied in details. It has been shown that green tea and its active components interfere with signal transduction pathways. Thus the activities of various protein kinases are inhibited, the expression of nuclear proto-oncogenes declines and the activity of ornithine decarboxylase (ODC) is reduced. ODC, which catalyzes the rate-limiting step in the biosynthesis of polyamines is closely linked with cellular proliferation and carcinogenesis. Inhibitors of ODC, like α-difluoromethylornithine (DFMO) have long been used for cancer prevention and therapy. It has been suggested that polyamine depletion by green tea could offer one explanation for its anti-cancer activities. Received July 27, 2001 Accepted September 8, 2001  相似文献   

11.
The metabolic syndrome (MetS) represents an emerging health burden for governments and health care providers. Particularly relevant for prevention and early management of MetS are lifestyle conditions including physical activity and the diet. It has been shown that green tea, when consumed on a daily basis, supports health. Many of the beneficial effects of green tea are related to its catechin, particularly (−)-epigallocatechin-3-gallate (EGCG), content. There is conclusive evidence from in vitro and animal studies which provide the concepts for underlying functional mechanisms of green tea catechins and their biological actions. An increasing number of human studies have explored the effects of green tea catechins on the major MetS conditions such as obesity, type-2 diabetes and cardiovascular risk factors. This article provides a comprehensive overview of the human studies addressing the potential benefits of green tea catechins on the MetS.The number of human studies in this field is still limited. However, the majority of human epidemiological and intervention studies demonstrate beneficial effects of green tea or green tea extracts, rich in EGCG on weight management, glucose control and cardiovascular risk factors. The optimal dose has not yet been established.The current body of evidence in humans warrants further attention. In particular, well-controlled long-term human studies would help to fully understand the protective effects of green tea catechins on parameters related to the MetS.  相似文献   

12.
Green tea extract and its polyphenolic components have been found to possess anticarcinogenic, antimutagenic, antihypertensive and antihepatotoxic effects, and several mechanisms have been proposed for these effects. In this study, the effects of five tea polyphenols, (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), (−) epicatechin-3-gallate (ECG), (−) epicatechin (EC) and (+)-catechin (C), were examined on the viability of Ehrlich ascites tumor cells in vitro and a possible relationship with tyrosine phosphorylation was determined. Proteins extracted from the cells treated with the tea polyphenols were separated by SDS-PAGE, and tyrosine-phosphorylated proteins were detected by immunoblotting with anti-phosphotyrosine antibody and the extent of phosphorylation determined. EGC (100 μM) caused a significant decrease in cell viability to 4.1±0.2% of the control value, and this correlated with a stimulation of protein tyrosine kinase (PTK) activity. EGCG (100 μM) also caused a slight decrease in cell viability (70% of the control value) but this and the other polyphenols, which had no effect on cell viability likewise, had no effect on tyrosine phosphorylation. Tyrosine phosphorylations of 42 and 45 kDa proteins were also observed for EGC. Further evaluation of the effect of EGC showed that the activity of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis in cells, decreased significantly as well. A significant correlation has therefore been observed between a cellular event, namely, a reduction in the viability of Ehrlich ascites tumor cells and an association with a tyrosine phosphorylation of 42 and 45 kDa proteins by the polyphenol EGC.  相似文献   

13.
Tea polyphenols, their biological effects and potential molecular targets   总被引:1,自引:0,他引:1  
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.  相似文献   

14.
Green tea (Camellia sinensis) is rich in catechins, of which (−)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review, we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.  相似文献   

15.
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.  相似文献   

16.
Many beneficial proprieties have been associated with polyphenols from green tea, such as chemopreventive, anticarcinogenic, antiatherogenic and antioxidant actions. In this study, we investigated the effects of green tea polyphenols (GTPs) and their principal catechins on the function of P-glycoprotein (P-gp), which is involved in the multidrug resistance phenotype of cancer cells. GTPs (30 microg/ml) inhibit the photolabeling of P-gp by 75% and increase the accumulation of rhodamine-123 (R-123) 3-fold in the multidrug-resistant cell line CH(R)C5, indicating that GTPs interact with P-gp and inhibit its transport activity. Moreover, the modulation of P-gp transport by GTPs was a reversible process. Among the catechins present in GTPs, EGCG, ECG and CG are responsible for inhibiting P-gp. In addition, EGCG potentiates the cytotoxicity of vinblastine (VBL) in CH(R)C5 cells. The inhibitory effect of EGCG on P-gp was also observed in human Caco-2 cells, which form an intestinal epithelial-like monolayer. Our results indicate that, in addition to their anti-cancer properties, GTPs and more particularly EGCG inhibit the binding and efflux of drugs by P-gp. Thus, GTPs or EGCG might be potential agents for modulating the bioavailability of P-gp substrates at the intestine and the multidrug resistance phenotype associated with expression of this transporter in cancer cells.  相似文献   

17.
Tea and health: the underlying mechanisms   总被引:12,自引:0,他引:12  
Detailed multidisciplinary research on the effect of tea and the associated tea polyphenols has led to major advances on the underlying mechanisms. In most studies, green and black tea have similar effects, four of which are reviewed in this paper. 1) Tea polyphenols are powerful antioxidants that may play a role in lowering the oxidation of LDL-cholesterol, with a consequent decreased risk of heart disease, and also diminish the formation of oxidized metabolites of DNA, with an associated lower risk of specific types of cancer. 2) Tea and tea polyphenols selectively induce Phase I and Phase II metabolic enzymes that increase the formation and excretion of detoxified metabolites of carcinogens. 3) Tea lowers the rate of cell replication and thus the growth and development of neoplasms. 4) Tea modifies the intestinal microflora, reducing undesirable bacteria and increasing beneficial bacteria. The accumulated knowledge suggests that regular tea intake by humans might provide an approach to decrease the incidence of and mortality from major chronic diseases.  相似文献   

18.
Black and green tea and heart disease: a review   总被引:4,自引:0,他引:4  
Tea is the second most consumed beverage around the world behind water. Epidemiological evidence points to both green and black tea consumption being protective with respect to heart disease. However, epidemiological evidence does not prove cause and effect and is potentially flawed by confounding variables. The recent evidence with respect to teas' beneficial effects from in vitro and in vivo studies in both animals and humans will be covered in this review. The comparative benefits of green vs. black tea will be considered. Articles published through December, 1999 will be included.  相似文献   

19.
Aqueous extracts of green and black teas have been shown to inhibit a variety of experimentally induced animal tumors, particularly ultraviolet (UV) B light-induced skin carcinogenesis. In the present study, we compared the effects of different extractable fractions of green and black teas on scavenging hydrogen peroxide (H2O2), and UV irradiation-induced formation of 8-hydroxy 2'-deoxyguanosine (8-OHdG) in vitro. Green and black teas have been extracted by serial chloroform, ethyl acetate and n-butanol, and divided into four subfractions designated as GT1-4 for green tea and BT1-4 for black tea, respectively. The total extracts from green and black teas exhibited a potent scavenging capacity of exogenous H2O2 in a dose-dependent manner. It appeared that the total extracts from black tea scavenged H2O2 more potently than those from green tea. When tested individually, the potency of scavenging H2O2 by green tea subfractions was: GT2 > GT3 > GT1 > GT4, whereas the order of efficacy for black tea was: BT2 > BT3 > BT4 > BT1. In addition, we demonstrated that total fractions of green and black teas substantially inhibited the induction of 8-OHdG in calf thymus by all three portions of UV spectrum (UVA, B and C). Consistent with the capacity of scavenging H2O2, the subfractions from black tea showed a greater inhibition of UV-induced 8-OHdG than those from green tea. At low concentrations, the order of potency of quenching of 8-OHdG by green tea subfractions was: GT2 > GT3 > GT4 > GT1 and the efficacy of all subfractions became similar at high concentrations. All subfractions of the black tea except BT1 strongly inhibited UV-induced 8-OHdG and the order of potency was: BT2 > BT3 > BT4 > BT1. Addition of (-)-epigallocatechin gallate (EGCG), an ingredient of green tea extract, to low concentration of green and black tea extracts substantially enhanced the scavenging of H2O2 and quenching of 8-OHdG, suggesting the important role of EGCG in the antioxidant activities of tea extracts. The potent scavenging of oxygen species and blocking of UV-induced oxidative DNA damage may, at least in part, explain the mechanism(s) by which green/black teas inhibit photocarcinogenesis.  相似文献   

20.
Antioxidant effects of green tea and its polyphenols on bladder cells   总被引:2,自引:0,他引:2  
Genitourinary tract inflammation/ailments affect the quality of life and health of a large segment of society. In recent years, studies have demonstrated strong antioxidant effects of green tea and its associated polyphenols in inflammatory states. This in vitro study examined the antioxidant capabilities (and putative mechanisms of action) of green tea extract (GTE), polyphenon-60 (PP-60, 60% pure polyphenols), (-)-epicatechin-3-gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) in normal/malignant human bladder cells following catechin treatment+/-1 mM H2O2 (oxidative agent). Cell viability, apoptosis and reactive oxygen species (ROS) formation were evaluated. Our results showed that H2O2 exposure significantly reduced normal (UROtsa) and high-grade (TCCSUP, T24) bladder cancer (BlCa) cell viability compared with control-treated cells (p<0.001). No affect on low-grade RT4 and SW780 BlCa cell viability was observed with exposure to H2O2. Compared to H2O2-treated UROtsa, treatment with PP-60, ECG and EGCG in the presence of H2O2 significantly improved UROtsa viability (p<0.01), with strongest effects evoked by ECG. Additionally, though not as effective as in UROtsa cells, viability of both high-grade TCCSUP and T24 BlCa cells, in comparison to H2O2-treated cells, was significantly improved (p<0.01) by treatment with PP-60, ECG, and EGCG in the presence of H2O2. Overall, our findings demonstrate that urothelium cell death via H2O2-induced oxidative stress is mediated, in part, through superoxide (O2-.;), and potentially, direct H2O2 mechanisms, suggesting that green tea polyphenols can protect against oxidative stress/damage and bladder cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号