首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs).

Results

The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced.

Conclusions

We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1826-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
Functional annotation of proteins encoded in newly sequenced genomes can be expected to meet two conflicting objectives: (i) provide as much information as possible, and (ii) avoid erroneous functional assignments and over-predictions. The continuing exponential growth of the number of sequenced genomes makes the quality of sequence annotation a critical factor in the efforts to utilize this new information. When dubious functional assignments are used as a basis for subsequent predictions, they tend to proliferate, leading to "database explosion". It is therefore important to identify the common factors that hamper functional annotation. As a first step towards that goal, we have compared the annotations of the Mycoplasma genitalium and Methanococcus jannaschii genomes produced in several independent studies. The most common causes of questionable predictions appear to be: i) non-critical use of annotations from existing database entries; ii) taking into account only the annotation of the best database hit; iii) insufficient masking of low complexity regions (e.g. non-globular domains) in protein sequences, resulting in spurious database hits obscuring relevant ones; iv) ignoring multi-domain organization of the query proteins and/or the database hits; v) non-critical functional inferences on the basis of the functions of neighboring genes in an operon; vi) non-orthologous gene displacement, i.e. involvement of structurally unrelated proteins in the same function. These observations suggest that case by case validation of functional annotation by expert biologists remains crucial for productive genome analysis.  相似文献   

3.
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.  相似文献   

4.
The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the "ortholog conjecture", or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins.  相似文献   

5.
6.
7.
During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.  相似文献   

8.
Lin YH  Chang BC  Chiang PW  Tang SL 《Gene》2008,416(1-2):44-47
According to recent reports, many ribosomal RNA gene annotations are still questionable, and the use of inappropriate tools for annotation has been blamed. However, we believe that the abundant 16S rRNA partial sequence in the databases, mainly created by culture-independent PCR methods, is another main cause of the ambiguous annotations of 16S rRNA. To examine the current status of 16S rRNA gene annotations in complete microbial genomes, we used as a criterion the conserved anti-SD sequence, located at the 3′ end of the 16S rRNA gene, which is commonly overlooked by culture-independent PCR methods. In our large survey, 859 16S rRNA gene sequences from 252 different species of the microbial complete genomes were inspected. 67 species (234 genes) were detected with ambiguous annotations. The common anti-SD sequence and other conserved 16S rRNA sequence features could be detected in the downstream-intergenic regions for almost every questionable sequence, indicating that many of the 16S rRNA genes were annotated incorrectly. Furthermore, we found that more than 91.5% of the 93,716 sequences of the available 16S rRNA in the main databases are partial sequences. We also performed BLAST analysis for every questionable rRNA sequence, and most of the best hits in the analysis were rRNA partial sequences. This result indicates that partial sequences are prevalent in the databases, and that these sequences have significantly affected the accuracy of microbial genomic annotation. We suggest that the annotation of 16S rRNA genes in newly complete microbial genomes must be done in more detail, and that revision of questionable rRNA annotations should commence as soon as possible.  相似文献   

9.
A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis"). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis.  相似文献   

10.
11.
Large-scale prokaryotic gene prediction and comparison to genome annotation   总被引:4,自引:0,他引:4  
MOTIVATION: Prokaryotic genomes are sequenced and annotated at an increasing rate. The methods of annotation vary between sequencing groups. It makes genome comparison difficult and may lead to propagation of errors when questionable assignments are adapted from one genome to another. Genome comparison either on a large or small scale would be facilitated by using a single standard for annotation, which incorporates a transparency of why an open reading frame (ORF) is considered to be a gene. RESULTS: A total of 143 prokaryotic genomes were scored with an updated version of the prokaryotic genefinder EasyGene. Comparison of the GenBank and RefSeq annotations with the EasyGene predictions reveals that in some genomes up to approximately 60% of the genes may have been annotated with a wrong start codon, especially in the GC-rich genomes. The fractional difference between annotated and predicted confirms that too many short genes are annotated in numerous organisms. Furthermore, genes might be missing in the annotation of some of the genomes. We predict 41 of 143 genomes to be over-annotated by >5%, meaning that too many ORFs are annotated as genes. We also predict that 12 of 143 genomes are under-annotated. These results are based on the difference between the number of annotated genes not found by EasyGene and the number of predicted genes that are not annotated in GenBank. We argue that the average performance of our standardized and fully automated method is slightly better than the annotation.  相似文献   

12.
13.
14.
15.
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.  相似文献   

16.
Helicobacter pylori isolates from different patients are characterized by diversity in the nucleotide sequences of individual genes, variation in genome size, and variation in gene order. Genetic diversity is particularly striking in vacuolating cytotoxin (vacA) alleles. In this study, five open reading frames (ORFs) were identified within a 4.2-kb region downstream from vacA in H. pylori 60190. One of these ORFs was closely related to the virulence-associated protein D (vapD) gene of Dichelobacter nodosus (64.9% nucleotide identity). A probe derived from vapD of H. pylori 60190 hybridized with only 19 (61.3%) of 31 H. pylori strains tested. Sequence analysis of the vapD region in vapD-negative H. pylori strains revealed that there were two different families of approximately 0.5-kb DNA segments, which were both unrelated to vapD. The presence of vapD was not associated with any specific family of vacA alleles. These findings are consistent with a recombinational population structure for H. pylori.  相似文献   

17.
18.
19.
FungiFun assigns functional annotations to fungal genes or proteins and performs gene set enrichment analysis. Based on three different classification methods (FunCat, GO and KEGG), FungiFun categorizes genes and proteins for several fungal species on different levels of annotation detail. It is web-based and accessible to users without any programming skills. FungiFun is the first tool offering gene set enrichment analysis including the FunCat categorization. Two biological datasets for Aspergillus fumigatus and Candida albicans were analyzed using FungiFun, providing an overview of the usage and functions of the tool. FungiFun is freely accessible at https://www.omnifung.hki-jena.de/FungiFun/.  相似文献   

20.
Satoshi Fukuchi  Ken Nishikawa 《DNA research》2004,11(4):219-31, 311-313
Genome annotation produces a considerable number of putative proteins lacking sequence similarity to known proteins. These are referred to as "orphans." The proportion of orphan genes varies among genomes, and is independent of genome size. In the present study, we show that the proportion of orphan genes roughly correlates with the isolation index of organisms (IIO), an indicator introduced in the present study, which represents the degree of isolation of a given genome as measured by sequence similarity. However, there are outlier genomes with respect to the linear correlation, consisting of those genomes that may contain excess amounts of orphan genes. Comparisons of genome sequences among closely related strains revealed that some of the annotated genes are not conserved, suggesting that they are ORFs occurring by chance. Exclusion of these non-conserved ORFs within closely related genomes improved the correlation between the proportion of orphan genes and the IIO values. Assuming that the correlation holds in general, this relationship was used to estimate the number of "authentic" orphan genes in a genome. Using this definition of authentic orphan genes, the anomalies arising from over-assignments, e.g., the percentages of structural annotations, were corrected for 16 genomes, including those of five archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号