首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-kappaB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-kappaB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-kappaB signaling pathway via NF-kappaB-inducing kinase and IkappaB kinase-beta activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IkappaBalpha superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-kappaB. Moreover, a NO donor, S-nitroso-N-acetylpenicillamine (100 microM), decreased caspase-3 activity and apoptosis in NF-kappaB-suppressed cells infected with H. pylori. These results suggest that NF-kappaB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.  相似文献   

2.
Helicobacter pylori causes various gastroduodenal diseases including gastric MALT lymphoma, but the mechanism underlying H. pylori-induced carcinogenesis is not known. The alternative pathway for NF-kappaB activation, which involves the processing of NF-kappaB2/p100 to p52, has been implicated in lymphocyte survival, attenuated apoptosis, and secondary lymphoid tissue development. In this study, we investigated H. pylori-induced activation of NF-kappaB through the alternative pathway in B lymphocytes. In immunoblot and EMSA, H. pylori induced NF-kappaB2/p100 processing to p52 and subsequent nuclear accumulation in IM-9 (human B cell line) cells and human peripheral blood B cells, but not in AGS (human gastric cancer cell line) cells. The activation of the alternative pathway was LPS-dependent but not cag pathogenicity island-dependent. Alternative pathway activation by H. pylori was associated with attenuated apoptosis. The expression levels of B lymphocyte chemoattractant, EBI-1 ligand chemokine, and stromal cell-derived factor-1alpha mRNAs were up-regulated in cocultured human B cells and in infected human gastric mucosa. In the infected mucosa, NF-kappaB2/p100 and p52 were detected immunohistochemically in the cytoplasm and nuclear compartments of lymphocytes, but not in epithelial cells. In summary, H. pylori activates the alternative NF-kappaB pathway in B lymphocytes. The effects on chemokine production and antiapoptosis mediated by H. pylori-induced processing of NF-kappaB2/p100 to p52 may drive lymphocytes to acquire malignant potential.  相似文献   

3.
4.
5.
6.
7.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

8.
Helicobacter pylori induces NF-kappaB activation, leading to mucosal inflammation via cag pathogenicity island. Although recent studies have implicated several candidate proteins of both H. pylori and host, the molecular mechanism by which H. pylori activates NF-kappaB remains unclear. The aim of this study was to analyze the mechanism of cag pathogenicity island-mediated NF-kappaB activation in epithelial cells. The responses of human cell lines and mouse embryonic fibroblasts to infection with wild-type H. pylori or cagE mutant were investigated. The effect of small interfering RNAs (siRNAs) for several NF-kappaB signaling intermediate molecules was evaluated in H. pylori-induced IkappaBalpha phosphorylation and IL-8 production. Protein interactions of exogenously expressed TNFR-associated factor 6 (TRAF6) and MyD88 or receptor-interacting protein 2 and nucleotide-binding oligomerization domain 1 or those of endogenous IkappaB kinase, TGF-beta-activated kinase 1 (TAK1), and TRAF6 were assessed by immunoprecipitation. Cag pathogenicity island-dependent NF-kappaB activation was observed in human cell lines, but not in mouse fibroblasts. In human epithelial cells, H. pylori-induced IkappaBalpha phosphorylation and IL-8 production were severely inhibited by siRNAs directed against TAK1, TRAF6, and MyD88. In contrast, siRNAs for TRAF2, IL-1R-associated kinases 1 and 4, and cell surface receptor proteins did not affect these responses. H. pylori infection greatly enhanced MyD88 and TRAF6 complex formation in a cag-dependent manner, but did not enhance Nod1 and receptor-interacting protein 2 complex formation. H. pylori also induced TAK1 and TRAF6 complexes. These results suggest that the cag pathogenicity island of H. pylori is a cell type-specific NF-kappaB activator. TAK1, TRAF6, and MyD88 are important signal transducers in H. pylori-infected human epithelial cells.  相似文献   

9.
Helicobacter pylori activates extracellular-signal related (ERK) kinases in gastric epithelial cells, via transactivation of the EGF receptor (EGFR). H. pylori activation of EGFR may be relevant to epithelial hyperproliferation and gastric carcinogenesis. The aim of this study was to develop an 'In-Cell Western' (ICW) assay for quantitative examination of H. pylori-induced epithelial signalling, to enable the role of the EGFR in H. pylori-induced phosphorylation of ERK in epithelial cells to be ascertained. H. pylori strains were co-incubated with A431 and AGS cells. pERK and total ERK were quantified in situ using ICW analysis. H. pylori strains both with, and without a cag PAI, and Helicobacter felis, significantly increased pERK levels in A431 cells. The EGFR inhibitor EKB-569 dose-dependently reduced H. pylori-induced ERK phosphorylation in A431 and AGS cells. A significantly lower reduction was observed with cag+ strains in A431 but not AGS cells. The cag PAI was not necessary for EGFR signal transactivation. These data suggest that H. pylori induces pERK in epithelial cells partly via the EGFR pathway. Additional signalling mechanisms are likely to be involved in H. pylori-induced ERK phosphorylation. ICW analysis is a rapid quantitative method for evaluating the effects of inhibitors on H. pylori-induced cell signalling pathways of relevance to gastric carcinogenesis.  相似文献   

10.
11.
NF-kappaB is a critical regulator of genes involved in inflammation. Gastric epithelial cells and macrophages are considered the main sources of pro-inflammatory cytokines. We investigated NF-kappaB activation by Helicobacter pylori in MKN45 gastric epithelial cells and THP-1 monocytic cells. Although, cag pathogenicity island (PAI)-positive H. pylori (wild type) activated NF-kappaB in both cells, isogenic mutant of cagE (DeltacagE) activated it only in THP-1 cells. Supernatant from the wild type culture could activate NF-kappaB in THP-1 cells but not in MKN45 cells. High density cDNA array analysis revealed that mRNA expression of NF-kappaB-regulated genes such as interleukin (IL)-8, tumor necrosis factor-alpha (TNFalpha), and IL-1beta was significantly up-regulated by the wild type in both cells, whereas it was up-regulated by DeltacagE only in THP-1 cells. Experiments using CD14-neutralizing antibody and IL-1 receptor-associated kinase (IRAK) assay showed that both wild type and DeltacagE H. pylori activated NF-kappaB through CD14 and IRAK in THP-1 cells but not in MKN45 cells. Macrophages from C3H/HeJ mice carrying point mutation in the Toll-like receptor 4 (TLR4) gene showed decreased NF-kappaB activation and TNFalpha secretion compared with C3H/HeN mouse macrophage when treated with H. pylori. In conclusion, H. pylori-induced NF-kappaB activation in epithelial cells is dependent on cag PAI and contact but does not involve CD14 and IRAK, whereas in macrophage/monocytic cells it is independent of cag PAI or contact but involves CD14 and TLR4.  相似文献   

12.
13.
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).  相似文献   

14.
15.
16.
17.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

18.
The gastric pathogen Helicobacter pylori is known to activate epithelial cell signaling pathways that regulate numerous inflammatory response genes. The aim of this study was to elucidate the pathway leading to extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in H. pylori-infected AGS gastric epithelial cells. We find that H. pylori, via activation of the epidermal growth factor (EGF) receptor activates the small GTP-binding protein Ras, which in turn, mediates ERK1/2 phosphorylation. cag+ strains of H. pylori are able to induce greater EGF receptor activation than cag- strains, and studies with isogenic mutants indicate that an intact type IV bacterial secretion system is required for this effect. Blockade of EGF receptor activation using tyrphostin AG1478 prevents H. pylori-mediated Ras activation, inhibits ERK1/2 phosphorylation, and substantially decreases interleukin-8 gene expression and protein production. Investigations into the mechanism of EGF receptor activation, using heparin, a metalloproteinase inhibitor and neutralizing antibodies reveal that H. pylori transactivates the EGF receptor via activation of the endogenous ligand heparin-binding EGF-like growth factor. Transactivation of gastric epithelial cell EGF receptors may be instrumental in regulating both proliferative and inflammatory responses induced by cag+ H. pylori infection.  相似文献   

19.
In vivo and in vitro studies have shown an increase in apoptosis in gastric epithelial cells in persons infected with Helicobacter pylori. H. pylori-induced activation of caspase-8 and -3 was evaluated using a human gastric adenocarcinoma cell line (AGS) and gastric tissue from humans and monkeys colonized with H. pylori. The enzymatic activity of caspase-8 was detected only in AGS cells exposed to H. pylori up to 24 h. The active form of caspase-8 was present by Western blot after exposure to H. pylori for 3 h and persisted through 24 h. Caspase-3 activity was present in AGS cells exposed to H. pylori for 3 h, reaching a maximum after 24 h (a sevenfold increase in activity). Caspase-8-mediated cleavage of procaspase-3 generated a 20-kDa band (indicative of the presence of active caspase-3) present only in AGS cells exposed to H. pylori. Active caspase-3 staining was markedly increased in gastric mucosa from infected persons and animals, compared to uninfected controls by immunohistochemistry. Stimulation of downstream events leading to apoptosis, such as the cleavage of PARP (poly adenosine-diphosphate-ribose polymerase) and DFF45 (DNA fragmentation factor 45) as a result of activation of caspase-3, was evaluated. PARP was cleaved, resulting in the presence of both an 89- and a 24-kDa band along with DFF45, resulting in the presence of 10- and 12-kDa bands only in gastric cells exposed to H. pylori. Our data show that H. pylori stimulates the activation of caspases and downstream mediators of caspase-induced apoptosis. This suggests that H. pylori-induced apoptosis is mediated through caspase pathways, which include the activation of caspase-8 and subsequent cleavage and activation of caspase-3. This is consistent with caspase-3 activation that was found in the gastric mucosa of humans and monkeys infected with H. pylori.  相似文献   

20.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号