首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Analysis of evolution of exon-intron structure of eukaryotic genes   总被引:10,自引:0,他引:10  
The availability of multiple, complete eukaryotic genome sequences allows one to address many fundamental evolutionary questions on genome scale. One such important, long-standing problem is evolution of exon-intron structure of eukaryotic genes. Analysis of orthologous genes from completely sequenced genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists. The data on shared and lineage-specific intron positions were used as the starting point for evolutionary reconstruction with parsimony and maximum-likelihood approaches. Parsimony methods produce reconstructions with intron-rich ancestors but also infer lineage-specific, in many cases, high levels of intron loss and gain. Different probabilistic models gave opposite results, apparently depending on model parameters and assumptions, from domination of intron loss, with extremely intron-rich ancestors, to dramatic excess of gains, to the point of denying any true conservation of intron positions among deep eukaryotic lineages. Development of models with adequate, realistic parameters and assumptions seems to be crucial for obtaining more definitive estimates of intron gain and loss in different eukaryotic lineages. Many shared intron positions were detected in ancestral eukaryotic paralogues which evolved by duplication prior to the divergence of extant eukaryotic lineages. These findings indicate that numerous introns were present in eukaryotic genes already at the earliest stages of evolution of eukaryotes and are compatible with the hypothesis that the original, catastrophic intron invasion accompanied the emergence of the eukaryotic cells. Comparison of various features of old and younger introns starts shedding light on probable mechanisms of intron insertion, indicating that propagation of old introns is unlikely to be a major mechanism for origin of new ones. The existence and structure of ancestral protosplice sites were addressed by examining the context of introns inserted within codons that encode amino acids conserved in all eukaryotes and, accordingly, are not subject to selection for splicing efficiency. It was shown that introns indeed predominantly insert into or are fixed in specific protosplice sites which have the consensus sequence (A/C)AG|Gt.  相似文献   

2.
Claims of intron-structure correlations have played a major role in debates surrounding split gene origins. In the formative (as opposed to disruptive or "insertional") model of split gene origins, introns represent the scars of chimaeric gene assembly. When analyzed retrospectively, formative introns should tend to fall between modular units, if such units exist, or at least to exhibit a preference for sites favorable to chimaera formation. However, there is another possible source of preferences: under a disruptive model of split gene origins, fortuitous intron-structure correlations may arise because the gain of introns is biased with respect to flanking nucleotide sequences. To investigate the extent to which a sequence-biased intron gain model may account for the present-day distribution of introns, data on over 10,000 introns in eukaryotic protein-coding genes were integrated with structural data from a set of 1,851 nonredundant protein chains. The positions of introns with respect to secondary structures, solvent accessibility, and so-called "modules" were evaluated relative to the expectations of a null model, a disruptive model based on amino acid frequencies at splice junctions, and a formative model defined relative to these. The null model can be excluded for most structural features and is highly improbable when intron sites are grouped by reading frame phase. Phase-dependent correlations with secondary structure and side-chain surface accessibility are particularly strong. However, these phase-dependent correlations are explained largely by the sequence-based disruptive model.  相似文献   

3.
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.  相似文献   

4.
金珊  胡广安  张菁  曾庆韬 《昆虫学报》2006,49(3):373-380
内含子插入和丢失的进化动力及机制尚存在许多疑问。通过对真核生物的105个同源基因的蛋白质高度保守区域内含子-外显子结构的研究,对人Homo sapiens、小鼠Mus musculus、大鼠Rattus norvegicus、黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae和秀丽隐杆线虫Caenorhabditis elegans的3 574个内含子、1 001个的内含子保守位点进行分析,推断出不同系统中内含子的变化途径。发现在进化早期,脊椎动物、双翅目昆虫和线虫的共同祖先中含有大量内含子,在进化过程中,双翅目昆虫和线虫发生了大量的内含子丢失,甚至在双翅目昆虫中内含子丢失较线虫更严重。线虫获得的内含子略多于丢失的内含子, 而在双翅目昆虫中则显示出内含子的丢失明显多于内含子的获得。该结果合理地解释了内含子在脊椎动物、线虫及昆虫中数量的分布呈下降趋势。  相似文献   

5.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

6.
7.
Although spliceosomal introns are present in all characterized eukaryotes, intron numbers vary dramatically, from only a handful in the entire genomes of some species to nearly 10 introns per gene on average in vertebrates. For all previously studied intron-rich species, significant fractions of intron positions are shared with other widely diverged eukaryotes, indicating that 1) large numbers of the introns date to much earlier stages of eukaryotic evolution and 2) these lineages have not passed through a very intron-poor stage since early eukaryotic evolution. By the same token, among species that have lost nearly all of their ancestral introns, no species is known to harbor large numbers of more recently gained introns. These observations are consistent with the notion that intron-dense genomes have arisen only once over the course of eukaryotic evolution. Here, we report an exception to this pattern, in the intron-rich diatom Thalassiosira pseudonana. Only 8.1% of studied T. pseudonana intron positions are conserved with any of a variety of divergent eukaryotic species. This implies that T. pseudonana has both 1) lost nearly all of the numerous introns present in the diatom-apicomplexan ancestor and 2) gained a large number of new introns since that time. In addition, that so few apparently inserted T. pseudonana introns match the positions of introns in other species implies that insertion of multiple introns into homologous genic sites in eukaryotic evolution is less common than previously estimated. These results suggest the possibility that intron-rich genomes may have arisen multiple times in evolution. These results also provide evidence that multiple intron insertion into the same site is rare, further supporting the notion that early eukaryotic ancestors were very intron rich.  相似文献   

8.
We present an analysis of intron positions in relation to nucleotides, amino acid residues, and protein secondary structure. Previous work has shown that intron sites in proteins are not randomly distributed with respect to secondary structures. Here we show that this preference can be almost totally explained by the nucleotide bias of splice site machinery, and may well not relate to protein stability or conformation at all. Each intron phase is preferentially associated with its own set of residues: phase 0 introns with lysine, glutamine, and glutamic acid before the intron, and valine after; phase 1 introns with glycine, alanine, valine, aspartic acid, and glutamic acid; and phase 2 introns with arginine, serine, lysine, and tryptophan. These preferences can be explained principally on the basis of nucleotide bias at intron locations, which is in accordance with previous literature. Although this work does not prove that introns are inserted into genomes at specific proto-splice sites, it shows that the nucleotide bias surrounding introns, however it originally occurred, explains the observed correlations between introns and protein secondary structure.  相似文献   

9.
Many issues concerning the evolution of spliceosomal introns remain poorly understood. In this respect, the reconstruction of the evolution of introns in deep branching species such as alveolates is of special significance. In this study, we inferred the intron evolution in alveolates using 3,368 intron positions in 162 orthologs from 10 species (9 alveolates and 1 outgroup, Homo sapiens). We found that although very few intron gains and losses have occurred in Theileria and Plasmodium recently, many intron gains and losses have occurred in the evolution of alveolates. Thus, the rates of intron gain and loss in alveolates have varied greatly across time and lineage. Our results seem to support the notion that massive intron gains and losses have occurred during short episodes, perhaps coinciding with major evolutionary events.  相似文献   

10.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

11.
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.  相似文献   

12.
Several facets of spliceosomal intron in apicomplexans remain mysterious. First, intron numbers vary across species by 2 orders of magnitude, indicating massive intron loss and/or gain. Second, previous studies have shown very different evolutionary patterns over different timescales, with 100-fold higher rates of intron loss/gain between genera than within genera. Third, the timing and dynamics of nearly complete intron loss in Cryptosporidium species, as well as reasons for retention of the few remaining introns, remain unknown. We compared intron positions in 785 orthologous genes between 3 moderate to intron-rich apicomplexan species. We estimate that the Theileria-Plasmodium ancestor had 4.5 times as many introns as modern Plasmodium species and 38% more than modern Theileria species, and that subsequent intron losses have outnumbered intron gains by 5.8 to 1 in Theileria and by some 56 to 1 in Plasmodium. Several patterns suggest that these intron losses occurred by recombination with reverse-transcribed mRNAs. Intriguingly, this finding suggests significant retrotransposon activity in the lineages leading to both Theileria and Plasmodium, in contrast to the dearth of known retrotransposons and intron loss within modern species from both genera. We also compared genomes from Cryptosporidium parvum and C. hominis and found no evidence of ongoing intron loss, nor of intron gain. By contrast, Cryptosporidium introns are less evolutionary conserved with Toxoplasma than are introns from other apicomplexans; thus the few remaining introns are not simply indispensable ancestral introns.  相似文献   

13.
Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and green plants. After endosymbiosis, there was large-scale migration of genes from the endosymbiont to the nuclear genome of the host such that approximately 18% of the nuclear genes in Arabidopsis appear to be of chloroplast origin. To gain insights into the process of evolution of gene structure in these, originally, intronless genes, we compared the properties and the evolutionary dynamics of introns in genes of plastid origin and ancestral eukaryotic genes in Arabidopsis, poplar, and rice genomes. We found that intron densities in plastid-derived genes were slightly but significantly lower than those in ancestral eukaryotic genes. Although most of the introns in both categories of genes were conserved between monocots (rice) and dicots (Arabidopsis and poplar), lineage-specific intron gain was more pronounced in plastid-derived genes than in ancestral genes, whereas there was no significant difference in the intron loss rates between the 2 classes of genes. Thus, after the transfer to the nuclear genome, the plastid-derived genes have undergone a massive intron invasion that, by the time of the divergence of dicots and monocots (150-200 MYA), yielded intron densities only slightly lower than those in ancestral genes. Nevertheless, the accumulation of introns in plastid-derived genes appears not to have reached saturation and continues to this time, albeit at a low rate. The overall pattern of intron gain and loss in the plastid-derived genes is shaped by this continuing gain and the more general tendency for loss that is characteristic of the recent evolution of plant genes.  相似文献   

14.
内含子插入和丢失的进化动力及机制尚存有许多疑问。我们拟通过对真核生物的604个同源基因的蛋白高度保守区域内含子-外显子的结构研究, 对人Homo sapiens、大鼠Rattus norvegicus、小鼠Mus musculus、黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae和拟南芥Arabidopsis thaliana中的12 585个内含子、3 074个保守内含子进行分析, 推断出不同系统中内含子进化趋势。结果显示在进化中双翅目昆虫丢失了约850多个内含子, 脊椎动物获得了1 600多个内含子, 而双翅目昆虫获得的内含子及脊椎动物丢失的内含子则较少。在内含子分布上, 除酵母有明显5′末端倾向性外, 双翅目昆虫也显示出内含子分布倾向于基因的5′端, 而在脊椎动物及拟南芥中则没有这种分布的倾向性。这可能是由于双翅目昆虫丢失的内含子大多位于基因的3′端造成的。通过对现在脊椎动物内含子分布及获得的内含子的插入相的研究, 发现内含子的获得可能在一定程度上导致了现存基因的内含子中插入相0的内含子最多这一倾向。  相似文献   

15.
Chromalveolates are a large, diverse supergroup of unicellulareukaryotes that includes Apicomplexa, dinoflagellates, ciliates(three lineages that form the alveolate branch), heterokonts,haptophytes, and cryptomonads (three lineages comprising thechromist branch). All sequenced genomes of chromalveolates haverelatively low intron density in protein-coding genes, and fewintron positions are shared between chromalveolate lineages.In contrast, genes of different chromalveolates share many intronpositions with orthologous genes from other eukaryotic supergroups,in particular, the intron-rich orthologs from animals and plants.Reconstruction of the history of intron gain and loss duringthe evolution of chromalveolates using a general and flexiblemaximum-likelihood approach indicates that genes of the ancestorsof chromalveolates and, particularly, alveolates had unexpectedlyhigh intron densities. It is estimated that the chromalveolateancestor had, approximately, two-third of the human intron density,whereas the intron density in the genes of the alveolate ancestoris estimated to be slightly greater than the human intron density.Accordingly, it is inferred that the evolution of chromalveolateswas dominated by intron loss. The conclusion that ancestralchromalveolate forms had high intron densities is unexpectedbecause all extant unicellular eukaryotes have relatively fewintrons and are thought to be unable to maintain numerous intronsdue to intense purifying selection in their, typically, largepopulations. It is suggested that, at early stages of evolution,chromalveolates went through major population bottlenecks thatwere accompanied by intron invasion.  相似文献   

16.

Background:  

The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions.  相似文献   

17.
18.
How exon-intron structures of eukaryotic genes evolved under various evolutionary forces remains unknown. The phases of spliceosomal introns (the placement of introns with respect to reading frame) provide an opportunity to approach this question. When a large number of nuclear introns in protein-coding genes were analyzed, it was found that most introns were of phase 0, which keeps codons intact. We found that the phase distribution of spliceosomal introns is strongly correlated with the sequence conservation of splice signals in exons; the relatively underrepresented phase 2 introns are associated with the lowest conservation, the relatively overrepresented phase 0 introns display the highest conservation, and phase 1 introns are intermediate. Given the detrimental effect of mutations in exon sequences near splice sites as found in molecular experiments, the underrepresentation of phase 2 introns may be the result of deleterious-mutation-driven intron loss, suggesting a possible genetic mechanism for the evolution of intron-exon structures.  相似文献   

19.
Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6-7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing.  相似文献   

20.
Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases of intron gain and loss. We found 74 intron positions showing intraspecific presence-absence polymorphisms (PAPs) for the entire intron. Population genetic analyses identified intron PAPs at different stages of fixation and showed that intron gain or loss was very recent. We found direct support for extensive intron transposition among unrelated genes. A substantial proportion of highly similar introns in the genome either were recently gained or showed a transient phase of intron PAP. We also identified an intron transfer among paralogous genes that created a new intron. Intron loss was due mainly to homologous recombination involving reverse-transcribed mRNA. The large number of intron positions in transient phases of either intron gain or loss shows that intron evolution is much faster than previously thought and provides an excellent model to study molecular mechanisms of intron gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号