首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rat liver mitochondrial monoamine oxidase-A (MAO-A) and -B (MAO-B) were solubilized and isolated by procedures that included two cycles of treatment with a non-ionic detergent, Triton X-100, and then treatment with sodium perchlorate. After the treatment cycles with Triton X-100 about 23 and 36% of the original mitochondrial MAO-A and MAO-B activity, respectively, towards 0.1 mM serotonin and benzylamine remained in the residue. Of those activities, virtually no (2%) MAO-A activity, but appreciable (28%) MAO-B activity survived in the soluble state after the subsequent perchlorate treatment. The Km value and molecular turnover number of the soluble MAO-B, for benzylamine, were similar to those of the original activity in mitochondria, suggesting that this form of MAO has not undergone any qualitative change. After selective labelling of either form of MAO in mitochondria with 3H-pargyline and application of the isolation procedures, similar amounts of labelled MAO-A and -B were found in a soluble state, indicating that both forms of the enzyme were solubilized by the perchlorate treatment but that MAO-A was present in an inactivated state.  相似文献   

2.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

3.
A number of N-substituted-propargylamines are well known mechanism-based MAO inhibitors. Clorgyline and deprenyl in fact represent archetypal MAO-A and MAO-B inhibitors respectively. In the present study several ring-substituted deprenyl structural analogues were synthesized and alterations of selectivity and potency towards MAO-A and MAO-B activities were found. When deprenyl and its structural analogues were further modified to their corresponding quaternary ammonium salts, i.e. by attaching either an extra propargyl or a methyl group to the nitrogen atom, the potency of inhibition of MAO-B activity was drastically reduced and inhibition of MAO-A activity substantially increased. Such a complete inversion of selectivity may be related to a hydrophilic and electrophilic region seemingly present only in the MAO-A but not in the MAO-B molecule. The results also suggest that at least three sites are required for the selectivity and mechanism-based action of an inhibitor towards MAO.  相似文献   

4.
Effects of a selective monoamine oxidase (MAO)--A inhibitor, clorgyline, a selective MAO-B inhibitor, deprenyl, and a non-selective MAO inhibitor, nialamide, were investigated on footshock-induced aggression (FIA) in paired rats. The doses and pretreatment times of the inhibitors used were based on an earlier reported in vivo dose-response and time-course study. In addition, apomorphine, a dopaminergic receptor agonist, and beta-phenylethylamine, a preferred substrate for MAO-B, were also used to garner corroborative evidence. The results of the study indicate that selective MAO-A inhibitors are likely to attenuate FIA by augmenting central serotonergic activity, while selective MAO-B inhibitors accentuate the behaviour by facilitating dopaminergic activity. A permissive role for noradrenaline could not be delineated by the available data.  相似文献   

5.
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs.  相似文献   

6.
The rate of benzylamine utilization by monoamine oxidase (MAO)-B from human blood platelets was 2-4 times higher than that for octopamine. Both activities were inhibited 100% by 10(-7) M deprenyl (a specific MAO-B inhibitor) and were not affected by clorgyline (a specific MAO-A inhibitor) or by polyclonal antibodies to MAO-A. The preincubation of platelet MAO-B with purified MAO-A from mitochondrial membranes of human placenta resulted in appearance of excess octopamine activity. This additional activity was not precipitated by antibodies to MAO-A or inhibited by deprenyl but was inhibited by clorgyline. Incubation of the MAO-A preparation from placenta at 45 degrees C for 15 min before its preincubation with MAO-B caused 50% loss of both activities. Protease inhibitors had no effect on the modification of MAO. These data indicate that MAO-A or a factor tightly bound to it can modify MAO-B yielding a form of the enzyme with both MAO-A and MAO-B substrate and inhibitor affinities and MAO-B immunospecificity.  相似文献   

7.
Inherited and modificational changes of the stress reactivity in two outbreed stocks of wild Norway rats trapped in nature and selected for behaviour were studied. During 18 generations the rats of one stock were selected for the lack of defensive behaviour in the glove test (tame), while in another stock the aggressiveness was maintained by the selection (aggressive). Interstock differences in the brain noradrenaline mechanisms were observed. The emotional stress reactivity of the tame animals was decreased, in comparison with the aggressive ones. Definitive stress reactivity of adult rats was modified by injections of hydrocortisone to their mothers on the 16 and 18 days of gestation. Hormonal treatment changed noradrenaline mechanisms and decreased the reaction to emotional stressor in aggressive rats. The modified level of the stress reactivity of aggressive rats was similar to the definitive level of the tame ones. Hormonal treatment did not modify stress reactivity in tame rats. Thus, the phenotype only emerging in aggressive rats, as a result of hormonal modification, is the inherited norm of the tame animals. However, due to rat selection for the lack of defensive behaviour towards the man, high corticosteroid level in the blood of pregnant females, an external developmental factor, in respect to the fetus, loses regulatory function during the development of the neuroendocrine mechanisms of the stress reaction.  相似文献   

8.
In the rat brain, dopamine is metabolised by both A and B forms of monoamine oxidase (MAO), although the A form of the enzyme is the major component. The Km of MAO-A toward dopamine (120 microM) is lower than the Km of MAO-B toward this substrate (340 microM). The activity of MAO-A was lower in old rats than in young rats, and the same degree of decrease was found for 5-hydroxytryptamine as for dopamine as substrates for this enzyme form. The activity of MAO-B was higher in the old rats, the degree of increase being the same for dopamine as for beta-phenethylamine as substrates for this enzyme form. The Ki values of the inhibition of MAO-A by cimoxatone and MD770222 (the principal plasma metabolite of cimoxatone) were independent of the substrate used to assay for activity, but were lower than the Ki values for the inhibition of MAO-B by these compounds.  相似文献   

9.
The effects of metal chelators on monoamine oxidase (MAO) isozymes, MAO-A and MAO-B, in monkey brain mitochondria were investigated in vitro. MAO-A activity increased to about 40% with 0.1 μM calcium disodium edetate (CaNa2EDTA) using serotonin as a substrate, and this activation was proportional to the concentration of CaNa2EDTA. On the other hand, MAO-A activities were decreased gradually with an increasing concentration of o-phenanthroline and diethyldithiocarbamic acid, but these metal chelators had no effect on MAO-B activity in monkey brain. The activation of MAO-A activity by CaNa2EDTA was reversible. CaNa2EDTA did not activate both MAO-A and MAO-B activities in rat brain mitochondria. Zn and Fe ions were found in the mitochondria of monkey brain. Zn ions potently inhibited MAO-A activity, but Fe ions did not inhibit either MAO-A or MAO-B activity in monkey brain mitochondria. These results indicate that the activating action of CaNa2EDTA on MAO-A was the result of the chelating of Zn ions contained in mitochondria by CaNa2EDTA. These results also indicate the possibility that Zn ions may regulate physiologically the level of serotonin and norepinephrine content in brain by inhibiting a MAO-A activity.  相似文献   

10.
Abstract: The sex-dependent differentiation of monoamine oxidase (MAO) in the hypothalamus of 60-day-old, Charles River rats was found to involve only type A (MAO-A), and not type B (MAO-B) enzyme. In vivo inhibition of type A by clorgyline, and type B by (−)deprenyl, however, tended to decrease the specific activity of both types of MAO to a smaller extent in the female than in the male hypothalamus. When masculinization was prevented by neonatal administration of estradiol (E) to males, hypothalamic MAO-A and MAO-B activities increased in both control and MAO-inhibited rats. Androgenization of females, however, had little effect on the MAO activity. Whereas the effects of neonatal estrogenization were attributable neither to a direct influence of E nor to a sexual difference in the peripheral clearance of the MAO-inhibitor used, single, high doses of steroids to adult, but not to newborn rats, did acutely affect the kinetics of MAO-A. The activity of MAO-A was also decreased by high concentrations of E or TS in vitro. The imprinting for patterns of hypothalamic MAO-A and MAO-B in the two sexes results, probably, from genetic predetermination. Neonatal changes in the homeostasis of gonadal hormones may result in type-MAO nonspecific effects in adulthood, whereas the short-term effects of high concentrations of steroids may be selective for the A form.  相似文献   

11.
In rodents, SR 95191 [3-(2-morpholinoethylamino)-4-cyano-6-phenylpyridazine] has been shown to be active in animal models of depression. The profile of activity of SR 95191 suggests that the compound is a selective and short-acting type A monoamine oxidase (MAO) inhibitor (MAOI) in vivo. In the present study, the interaction of SR 95191 with MAO-A and MAO-B activity was further examined in vivo and in vitro. In brain, liver, and duodenum of pretreated rats, SR 95191 selectively inhibited MAO-A (ED50 = 3-5 mg/kg, p.o.), whereas MAO-B was only weakly inhibited for doses as high as 300 mg/kg, p.o. In vivo, SR 95191 (1-100 mg/kg, p.o.) antagonized, in a dose-dependent fashion, the irreversible inhibition of brain and liver MAO-A induced by phenelzine. Finally, dopamine and 5-hydroxytryptamine depleted from their striatal stores by tetrabenazine were able to displace SR 95191 from the active site of MAO-A. However, ex vivo, kinetic studies showed that the inhibitory effect of SR 95191 (1-10 mg/kg) towards MAO-A was noncompetitive and was unchanged after dilution or dialysis. In vitro, the inhibition of brain MAO-A, but not MAO-B, by SR 95191 was time dependent, with a 19-fold decrease in the IC50 values being observed over a 30-min incubation period (140 to 7.5 microM). At this time, the SR 95191-induced inhibition of MAO-A was not removed by repeated washings. When the reaction was started by adding the homogenate without prior preincubation with SR 95191, the inhibition of brain MAO-A was fully competitive (Ki = 68 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.  相似文献   

13.
Aggressive behavior is not a unitary trait, and different stimuli/situations elicit different kinds of aggressive behavior. According to numerous data the genotype plays a significant role in the expression of aggressive behavior. However, it remains unclear how genetic predisposition to one kind of aggression is linked with other kinds of aggressive behavior, especially pathological aggression (infanticide). Here, we report on our investigation of the expression of defensive, offensive, predatory and asocial aggression in wild rats selectively bred for 85 generations for either a high level or a lack of aggression towards humans. We found that those rats genetically predisposed to a high level of defensive aggression showed decreased social behavior and increased pathological aggressive behavior towards juvenile males. The highly aggressive rates showed a reduced latency time of attack and an increased latency time of the first social contact. Rats genetically predisposed to defensive aggression demonstrated increased predatory aggression—latency time of muricide was shorter in highly aggressive than in tame animals. At the same time, both lines of rats did not differ significantly in intermale aggression. We conclude that the data indicate a close relation between defensive, predatory and pathological aggressive behavior that allows us to suggest that similar genetic mechanisms underlie these types of aggressive behavior.  相似文献   

14.
As a result of experiments conducted on male outbred white rats, approximate limits were established of two sensitive periods for the formation of intraspecies aggression of rats under the influence of contacts with the animals of the same age: sensitive period from 12th to 21st postnatal day for changing from playing behaviour into the aggressive one; and 40-60 days for differentiation of the aggressivity against the males and females. It was shown, that despite considerable change in the spectrum of aggressive reactions of early isolated rats towards intruders and low effect of these reactions, judging by response behaviour of intruders, these reactions were based on the emotionally-motivational state, typical for the formed aggressive behaviour. It was also found, that disturbances of the aggression formation in rats isolated in early age, were caused by deprivation of contacts with rats of the same age and not by general informational impoverishment of the environment where rat pups were bred.  相似文献   

15.
Two types of monoamine oxidase activity (MAO-A and MAO-B) help regulate the levels of biogenic amines such as catecholamines and serotonin. Although MAO-A has greater activity toward most catecholamines than MAO-B, no direct experiments have determined the types and levels of MAO activity that are normally expressed in noradrenergic neurons. Noradrenergic neurons from neonatal rat superior cervical ganglia were isolated and cultured under conditions that permit either continued expression of the noradrenergic phenotype or promote a transition to a predominantly cholinergic phenotype. After 14-21 days in vitro, neurons from both types of cultures were assayed for the type and amount of monoamine oxidase activity using tryptamine, a common substrate for both MAO-A and MAO-B. Neurons cultured under noradrenergic conditions expressed sevenfold greater MAO activity than neurons cultured under cholinergic conditions. Essentially all MAO activity in the noradrenergic cultures was inhibited by preincubation with 10(-8)-10(-9) M clorgyline, which indicated that this activity was primarily MAO-A. Cultures grown under cholinergic conditions exhibited 6- to 10-fold lower MAO-A activity and an 8- to 10-fold lower level of catecholamine synthesis from labeled precursors compared to neurons grown under noradrenergic conditions. These results directly demonstrate that high MAO-A activity is expressed in noradrenergic neurons in vitro. The corresponding decreases in both MAO-A specific activity and catecholamine synthesis as neurons become cholinergic in vitro suggest that the expression of the noradrenergic phenotype involves the coordinate regulation of degradative as well as synthetic enzymes involved in catecholamine metabolism.  相似文献   

16.
Influence was studied of the bilateral electric coagulation of the basolateral part of the amygdala on the behaviour in unknown environment and on the attitude to the man of domesticated and aggressive foxes. Increase of exploratory behaviour with enhancing of motor activity was observed in all foxes after amygdala ablation. At the same time a decrease of positive emotional reactions to man was observed in the domesticated animals, while in the aggressive foxes defensive reactions to man and in unknown environment were weakened.  相似文献   

17.
Monoamine oxidase-A and -B of brain and peripheral tissues of human, dog, rat, and rabbit have been characterized with respect to kinetic parameters and response to limited trypsin treatment. MAO-A in all extracts was inactivated by trypsin to an extent that was species dependent, but not related to the nature of the tissue, to MAO-A/B ratios, or to kinetic parameters. MAO-B activity of human, dog, and rat was unaffected by trypsin under the conditions employed, but rabbit MAO-B was sensitive. Inactivation patterns obtained with the trypsin treatment described in this study provide additional evidence that structures of both MAO-A and MAO-B show species-specific variations.  相似文献   

18.
Chromone carboxylic acids were evaluated as human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitors. The biological data indicated that only chromone-3-carboxylic acid is a potent hMAO-B inhibitor, with a high degree of selectivity for hMAO-B compared to hMAO-A. Conversely the chromone-2-carboxylic acid resulted almost inactive against both MAO isoforms. Docking experiments were performed to elucidate the reasons of the different MAO IC50 data and to explain the absence of activity versus selectivity, respectively.  相似文献   

19.
A review of experimental data documenting that domestication of animals is associated with hereditary reorganization of neuro-endocrine mechanisms, responsible for basic processes of ontogeny, is presented. The data demonstrated changes in gonadal and pituitary-adrenal systems in domesticated animals. Analysis of evidence that selection for low aggressiveness towards man is, in fact, the selection for definite activity of brain neurotransmitters regulating aggressive behaviour and emotional stress response has been carried out. Supposed role of modifications in the mechanisms of domestication is discussed.  相似文献   

20.
Human brain and liver mitochondria contain membrane-bound monoamine oxidase of both A and B types. Monamine oxidase-A (MAO-A), either membrane-bound or in detergent-solubilized extracts from these tissues, was selectively inhibited during incubations with trypsin, chymotrypsin, thermolysin, or papain. MAO-A in solubilized, but not in membrane-bound, preparations was also very sensitive to the action of phospholipase A2, while MAO-B was unaffected. Membrane-bound MAO-A of rat brain mitochondria was more sensitive to phospholipases and less sensitive to proteases than was human brain enzyme, indicating that these agents may reveal species differences in MAO properties. Human brain and liver MAO-A, either solubilized or bound in mitochondrial membranes, apparently contains basic and aromatic peptide moieties that are available to proteases. Hydrolysis of these peptide bonds leads to rapid denaturation unless substrate molecules stabilize the active site. Phospholipase A2 may disrupt the phospholipid microenvironment of MAO-A, the integrity of which is essential for MAO-A activity, but not for MAO-B. No interconversion of the two activities was observed. After phospholipase A2 treatment, remaining MAO-A activity was recovered in low-molecular-weight regions of a gel filtration gradient, suggesting that MAO-A subunits were released. Although these experiments argue against the proposal that phospholipids may regulate the ratio of A/B activities of a single enzyme molecule, it is conceivable that endogenous phospholipases or proteases in mitochondrial membranes may influence MAO-A activity independently of MAO-B activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号