首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Three of the twenty recessive-lethal tumor suppressor genes of Drosophila cause imaginal disc tumors in the homozygously mutated state. One of these is the lethal(2)tumorous imaginal discs (l(2)tid) gene. Histological preparations show the tumorous imaginal disc epithelium to consist of a mosaic of cells in monolayer and cells in clumped arrangement. In contrast, the wild-type imaginal disc epithelium is comprised exclusively of cells in monolayer arrangement. Mutant imaginal disc tissue pieces implanted into ready-to-pupariate wild-type larvae fail to differentiate. Implantation of l(2)tid imaginal disc tissue pieces in vivo into wild-type adult flies revealed a lethal, tumorous growth comparable to that in situ, thus characterizing the l(2)tid imaginal discs as truly malignant. The phenotypes of double mutants between two l(2)tid alleles and tumor suppressor genes, such as lethal(2)giant larvae and lethal(2)brain tumor, and the epithelial overgrowth mutant lethal(2)fat are described and discussed. Finally, we present the genetic, cytogenetic and molecular localization of the l(2)tid gene to the giant chromosome bands 59F4-6.  相似文献   

2.
3.
Using P element-mediated mutagenesis we have isolated 20 X-linked lethal mutations, representing at least 14 complementation groups, which exhibit melanotic tumor phenotypes. We present the systematic analysis of this interesting group of lethal mutations that were selected for their visible melanotic or immune response. The lethal and melanotic tumor phenotypes of each lethal(1) aberrant immune response (air) mutation are pleiotropic effects of single genetic lesions. Lethality occurs throughout the larval and early pupal periods of development and larval development is extended in some air mutants. The air mutant lethal syndromes include abnormalities associated with the brain, haematopoietic organs, gut, salivary glands, ring glands, and imaginal discs. Additional characterization of the melanotic tumor mutations Tuml and tu(1)Szts have indicated that the melanotic tumor phenotype is similar to that observed in the air mutants. These studies have led to the proposal that two distinct classes of melanotic tumor mutations exist. Class 1 includes mutants in which melanotic tumors result from “autoimmune responses” or the response of an apparently normal immune system to the presence of abnormal target tissues. The Class 2 mutants display obvious defects in the haematopoietic organs or haemocytes, manifested as overgrowth, and the resulting aberrant immune system behavior may contribute to melanotic tumor formation.  相似文献   

4.
T. Torok  G. Tick  M. Alvarado    I. Kiss 《Genetics》1993,135(1):71-80
A single P-element insertional mutagenesis experiment was carried out for the second chromosome of Drosophila melanogaster using the P-lacW transposon. Out of 15,475 insertions on the second chromosome, 2,308 lethal and 403 semilethal mutants (altogether 2,711) were recovered. After eliminating clusters, 72% of the mutants represent independent insertions. Some of the mutants with larval, prepupal or pupal lethal phases have a prolonged larval period and show gradual overgrowth of the imaginal discs, brain and/or the hematopoietic organs (lymph glands). In this paper, 16 overgrowth mutants are described. As revealed by in situ hybridization, none of the mutations corresponds to any of the previously known overgrowth mutations on the second chromosome.  相似文献   

5.
Homozygosity for recessive mutations inDrosophila tumour suppressor genes likelethal giant larvae (Igl), lethal giant discs (Igd) orfat (ft) induce uncontrolled cell proliferations in the imaginal discs of the mutant larvae. Imaginal discs of larvae mutant forIgl tumour suppressor gene display neoplastic growths while those mutant forIgd orfat display hyperplastic growths. Results presented in this study reveal that mutant wing imaginal discs with neoplastic or hyperplastic overgrowths display high mitotic activity primarily during the extended period of larval life when their wild-type siblings have already pupariated. Both these categories of overgrowths show overall stability of the karyotypes and only low frequency of aneuploidy. The hyperplastic imaginal discs ofIgd orft mutant larvae displayed normal chromosome condensation. In contrast, the neoplastic imaginal discs ofIgl mutants showed high frequency of mitotic cells with undercondensed chromosomes. In this respect the neoplastic discs resemble malignant neuroblastomas of theIgl larvae which also display undercondensed chromosomes. These results thus suggest an indirect role of the cytoskeletal protein encoded byIgl tumour suppressor gene in aspects of normal chromosome condensation during mitosis.  相似文献   

6.
The potential to genetically dissect tumorigenesis provides the major reason to study this process in the fruit flyDrosophila. Over the last 30 years genetic analysis has identified some 55 genes in which recessive mutations cause the appearance of specific tumours during development in tissues such as the imaginal discs, the brain hemispheres, the hematopoietic organs or the gonads, Since the normal allele acts dominantly over the mutated allele, these genes are designated as tumour suppressor genes. The estimate of the number of genes that can be mutated to tumour formation may be, however, much higher ranging between I00 to 200. The challenge before this field is how best to identify these genes and elucidate their function. Current molecular procedures, such as mutagenesis mediated by P-element transposon, provide new ways for tagging any gene of interest inDrosophila and thus for cloning it rapidly. Function of the gene product can be inferred by comparing its amino acid sequence with sequences of proteins with known function or can be determined by histochemical and biochemical investigations. Progress in the understanding of tumour suppression inDrosophila is most advanced in the case of genes regulating cell growth in imaginal discs. The imaginal discs are small groups of cells displaying a strong apical-basal polarity and form folded sacs of epithelia which grow throughout the larval life and give rise to the adult tegument during metamorphosis. Tumour suppressor genes regulating cell growth of imaginal discs, such as thelethal(2)giant larvae (l(2)g1),lethal(1)discs large-1 andexpanded genes, were found to encode proteins localized in domains of cell to cell contact on the plasma membrane and were thus thought to maintain cell adhesion. However, recent studies of l(2)gl have revealed that the l(2)gl protein is a component of the normal cytoskeleton which can participates to the cytoskeletal matrix underlaying the plasma membrane. These findings indicate that the changes in cell shape and the loss of apical-basal polarity in imaginal disc cells result primarily from alterations in the cytoskeleton structure. Furthermore the neoplastic growth of the mutated cells may be caused by the disorganization of an intracellular communication system that ultimately controls cell proliferation and/or cell differentiation.  相似文献   

7.
Summary Twenty-seven late larval or early pupal lethal mutations were isolated for the X-chromosome, some of which showed structural and/or functional deficiencies of the imaginal discs. The mutants were grouped according to the size and morphology of their discs as follows: 1. discs normal: 18 mutants. 2. discs small: 2 mutants. 3. discs degenerate: 4 mutants. 4. discless: 1 mutant. 5. discs heterogeneous: 2 mutants. Preliminary characterization of the mutants included a study of disc morphology, puparium formation and pupal molt, in vivo and in vitro evagination of the imaginal discs, autonomy of the mutation in the disc tissue (differentiation after transplantation and gynander mosaicism test). Possible relations between disc morphology and the former characteristics are discussed.  相似文献   

8.
Using P element-mediated mutagenesis we have isolated 20 X-linked lethal mutations, representing at least 14 complementation groups, which exhibit melanotic tumor phenotypes. We present the systematic analysis of this interesting group of lethal mutations that were selected for their visible melanotic or immune response. The lethal and melanotic tumor phenotypes of each lethal(1) aberrant immune response (air) mutation are pleiotropic effects of single genetic lesions. Lethality occurs throughout the larval and early pupal periods of development and larval development is extended in some air mutants. The air mutant lethal syndromes include abnormalities associated with the brain, haematopoietic organs, gut, salivary glands, ring glands, and imaginal discs. Additional characterization of the melanotic tumor mutations Tuml and tu(1)Szts have indicated that the melanotic tumor phenotype is similar to that observed in the air mutants. These studies have led to the proposal that two distinct classes of melanotic tumor mutations exist. Class 1 includes mutants in which melanotic tumors result from "autoimmune responses" or the response of an apparently normal immune system to the presence of abnormal target tissues. The Class 2 mutants display obvious defects in the haematopoietic organs or haemocytes, manifested as overgrowth, and the resulting aberrant immune system behavior may contribute to melanotic tumor formation.  相似文献   

9.
Summary Imaginal discs and larval brains of wildtype andlethal (3) giant larvae ofDrosophila hydei were transplanted into adult foreign hosts and examined after about 2 weeks. The transplants behaved very differently in different host species, viz. 6 species ofDrosophila, 5 other species of Diptera, and 3 species belonging to the Coleoptera or Dictyoptera, whereby the degree of incompatibility was more or less correlated with taxonomic distances. One notable exception was found in the cheese skipper,Piophila casei, an entirely compatible host.  相似文献   

10.
Recessive lethal mutations of the lethal(2)giant discs (l(2)gd) and lethal(2)fat (l(2)ft) loci of Drosophila melanogaster cause imaginal disc hyperplasia during a prolonged larval stage. Imaginal discs from l(2)ft l(2)gd or Gl(2)gd double homozygotes show more extensive overgrowth than in either single homozygote, and double homozygous l(2)ft l(2)gd mitotic clones in adult flies show much more overgrowth than is seen in clones homozygous for either l(2)gd or l(2)ft alone. dachsous (ds) also acts as an enhancer of l(2)gd, producing dramatically overgrown discs and causing failure to pupariate in double homozygotes. The comb gap (cg) mutation, which also interacts with ds, greatly enhances the tendency of imaginal discs from l(2)gd larvae to duplicate as they overgrow. If l(2)gd homozygotes are made heterozygous for l(2)ft, then several discs duplicate, indicating that l(2)ft acts as a dominant enhancer of l(2)gd. l(2)ft also acts as a dominant enhancer of l(2)gd, and conversely l(2)gd acts as a dominant modifier of l(2)ft. The enhancement of overgrowth caused by various mutant combinations is accompanied by changes in expression of Decapentaplegic and Wingless. These results show that tumor suppressor genes act in combination to control cell proliferation, and that tissue hyperplasia can be associated with ectopic expression of genes involved in pattern formation.  相似文献   

11.
The lethal(3)discs overgrown (dco) locus of Drosophila melanogaster, located on the third chromosome at cytogenetic position 100A5,6-100B1,2, is necessary for normal development and growth control in the imaginal discs of the larva. Three recessive lethal alleles (dco2, dco3, and dco18) in heteroallelic combinations and one allele (dco3) when homozygous cause the imaginal discs to continue to grow beyond the normal disc-intrinsic limit during an extended larval period. Some degeneration also occurs in the overgrowing discs. The discs overgrow even when transplanted early in their development into wild-type hosts, whereas normal discs stop growth at about the normal final size under such conditions, indicating that the overgrowth is a disc-autonomous effect of the mutations. During overgrowth the imaginal discs retain their single-layered epithelial structure except near regions of degeneration, and they differentiate into disc-appropriate but abnormal adult structures when transplanted into wild-type larval hosts. When the mutant larvae are reared under certain conditions a small percentage develop to the pharate adult stage, and these animals show a characteristic syndrome of abnormalities including swollen leg segments with many extra bristles, small or missing eyes, duplicated antennae and palpi, and separated vesicles of cuticle. A fourth recessive lethal allele (dcole88), when homozygous or in heteroallelic combination with the overgrowth alleles, causes the imaginal discs to degenerate, producing a "discless" phenotype. Gap junction-mediated communication was assayed by observing the intercellular transfer of injected fluorescein complexon (dye coupling). Dye coupling in the imaginal discs of the dco genotypes that cause overgrowth was dramatically reduced at 4 days after egg laying (AEL) compared with wild-type controls. Coupling was more normal although still significantly reduced at 7-8 and 12-14 days AEL. In c43hs1, another disc overgrowth mutant, the imaginal disc cells also showed very reduced dye coupling at 4 days and incomplete coupling at 9 days. In contrast, discs from wild-type larvae, two other imaginal disc overgrowth mutants, and a cell death mutant showed extensive dye coupling at all stages tested. Electron microscopic morphometry revealed a reduction in gap-junction length per unit lateral plasma membrane length in dco3/dco18 and c43hs1 wing discs, although not in dco2/dco3, compared with wild-type wing discs. The results suggest that gap-junctional cell communication may be involved in the cell interactions that limit cell proliferation in vivo.  相似文献   

12.
To understand the roles of two well known tumour suppressor genes.l(2)gl andl(2)gd in normal imaginal disc development inDrosophila, we have initiated a study to examine effect of mulations of these genes on the expression of genes involved in the patterning of the imaginal discs. In this study we show that the expression ofwingless, theDrosophila orthologue of the mammalian oncogeneWnt, is affected in the imaginal discs ofl(2)gl 4 andl(2)gd 1 mutant individuals. In the tumourous wing imaginal discs froml(2)gl mutant larvae, the pattern ofwingless expression was progressively disrupted with an increase in the area of expression, Tumourous wing imaginal discs froml(2)gd homozygous individuals exhibited progressive broadening and extension of the wingless expressing domains. We suggest thatl(2)gl andl(2)gd might be involved in regulating post embryonic expression ofWingless.  相似文献   

13.

Background  

Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. Precancerous cells are often removed by cell death from normal tissues in the early steps of the tumourigenic process, but the molecules responsible for such a fundamental safeguard process remain in part elusive. With the aim to investigate the molecular crosstalk occurring between precancerous and normal cells in vivo, we took advantage of the clonal analysis methods that are available in Drosophila for studying the phenotypes due to lethal giant larvae (lgl) neoplastic mutation induced in different backgrounds and tissues.  相似文献   

14.

Background  

The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.  相似文献   

15.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

16.
17.
Genetic analysis has been performed to reveal vital genes around two puffs, a late 62C puff and an early-late 62E puff. Their roles in hormonal regulatory mechanisms have been estimated. A locus represented by four lethal mutations has been found in the vicinity of the 62E puff. The mutants display disturbed puffing, which suggests the involvement of this locus in hormonal regulatory mechanisms. In the 62C puff region, 26 mutations have been found that proved to be allelic to mutations in theD-Titin gene. The giant D-Titin gene is essential for the sarcomeric organization of striated muscles. According to the results of in situ hybridization with polytene chromosomes, the D-Titin gene occupies the entire 62C puff. The phenotypic characteristics of the novel mutants suggest that this protein is polyfunctional, and its role is not restricted to processes in the muscular tissue. It may also be involved in the morphogenesis of leg imaginal disks, and it is necessary for condensation and separation of sister chromatids during mitosis. Mutations in the ecdysone-induced BR-C and E74 genes cause disturbances similar to those found in this study. In addition, mutations of these genes can affect the D-Titin gene activity, which suggests that the three genes are involved in similar morphogenetic and myogenetic processes.  相似文献   

18.
Drosophila has illuminated our understanding of the genetic basis of normal development and disease for the past several decades and today it continues to contribute immensely to our understanding of complex diseases 1-7. Progression of tumors from a benign to a metastatic state is a complex event 8 and has been modeled in Drosophila to help us better understand the genetic basis of this disease 9. Here I present a simple protocol to genetically induce, observe and then analyze the progression of tumors in Drosophila larvae. The tumor induction technique is based on the MARCM system 10 and exploits the cooperation between an activated oncogene, RasV12 and loss of cell polarity genes (scribbled, discs large and lethal giant larvae) to generate invasive tumors 9. I demonstrate how these tumors can be visualized in the intact larvae and then how these can be dissected out for further analysis. The simplified protocol presented here should make it possible for this technique to be utilized by investigators interested in understanding the role of a gene in tumor invasion.  相似文献   

19.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

20.

Background  

Proper patterning of the follicle cell epithelium over the egg chamber is essential for the Drosophila egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that lethal(2)giant larvae (lgl), a Drosophila tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, scribble (scrib) and discs large (dlg), in the epithelial patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号