首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Monocytes and macrophages can produce a large repertoire of cytokines and participate in the pathogenesis of granulomatous diseases. We investigated the production of pro- and anti-inflammatory cytokines by monocytes from patients with active paracoccidioidomycosis. Peripheral blood monocytes from 37 patients and 29 healthy controls were cultivated with or without 10 microg/ml of lipopolysaccharide (LPS) for 18 h at 37 degrees C, and the cytokine levels were determined in the culture supernatants by enzyme immunoassay. The results showed that the endogenous levels of tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-8, IL-10 and transforming growth factor beta detected in the supernatant of patient monocytes cultivated without stimulus were significantly higher than those produced by healthy controls. These data demonstrated that monocytes from patients with active paracoccidioidomycosis produce high levels of cytokines with both inflammatory and anti-inflammatory activities. However, patient monocytes produced significantly lower TNF-alpha and IL-6 levels in response to LPS when compared to normal subjects, suggesting an impairment in their capacity to produce these cytokines after LPS stimulation. Concentrations of IL-1beta, IL-8 and IL-10 in cultures stimulated with LPS were higher in patients than in controls. These results suggest that an imbalance in the production of pro- and anti-inflammatory cytokines might be associated with the pathogenesis of paracoccidioidomycosis.  相似文献   

2.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

3.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

4.
Vertical transmission of HIV-1 can occur at three different stages: during gestation, delivery and breast feeding. To determine the role of cytokines in vertical transmission of HIV during gestation, we studied the secretion of IL-1beta, TNF-alpha and IL-6 from in vitro infected and Mock-infected placental macrophages (Hofbauer cells) in comparison to blood monocyte derived macrophages (MDM). Hofbauer cells stimulated with lipopolysaccharide (LPS) secreted lower levels of HIV stimulatory cytokines (6-8 ng/ml) in the supernatants than MDM (26 ng/ml, p<0.005). Cytokine levels in MDM decreased upon HIV infection to 7 ng/ml. IL-6 was the major cytokine produced after LPS stimulation by the two cell populations (p<0.005), being MDM the major cytokine producer. In vitro infection studies with a M-tropic virus (HIV-BaL) indicated that MDM were 10x more susceptible to HIV than placental macrophages (p=0.001). Our results indicate that although macrophages from term placenta secrete lower amount of HIV stimulatory cytokines than MDM, there was no correlation between the levels of cytokines and HIV production by both cells.  相似文献   

5.
Hyperbaric oxygen (HBO) is a therapeutic intervention with applications in a large variety of diseases, including traumatic injuries and acute or chronic infections. The presence of pro-inflammatory cytokines regulates certain factors including adhesion molecules, which play a significant role in HBO effects. We have investigated the effect of HBO on pro-inflammatory cytokine release [tumor necrosis factor-alpha (TNF-alpha), interleukin 6 and 8 (IL-6 and IL-8)], and the regulation of adhesion molecules [soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular adhesion molecule (sVCAM)] after lipopolysaccharide (LPS) stimulation in 16 healthy individuals, originating from an urban area. A total number of 64 samples were treated, divided into four groups: Group A: not stimulated with LPS and not exposed to HBO. Group B: stimulated with LPS and not exposed to HBO. Group C: not stimulated with LPS and exposed to HBO. Group D: stimulated with LPS and exposed to HBO. The LPS stimulation dose was 100 pg\ml for 0.1 ml whole blood diluted 1:10. After incubation, samples were exposed to HBO with 100% O2 at 2.4 atmospheres absolute (ATA) for 90 min. TNF-alpha, IL-6, IL-8 and sICAM-1, sVCAM levels were determined in culture supernatant, with ELISA. We observed an enhanced effect of LPS stimulation following exposure to HBO, which caused an increase in cytokine production (TNF-alpha, IL-6, IL-8), a reduction in sICAM, and no change to sVCAM, while their levels without stimulation remained almost invariable. The decrease in sICAM levels could be related to the increased levels of IL-8, as the production of this chemokine is involved in the regulation of adhesion molecules.  相似文献   

6.
To assess the stimulated production of Interleukin-6 and Interleukin-8 in healthy term neonates compared to adults, and to study the effect of labour on the capacity of cytokine secretion, 20 healthy term neonates (11 delivered by elective caesarean section, (ECS) group; 9 vaginally delivered, (VD) group) were included in the study, and five healthy adult volunteers served as controls. Spontaneous and lipopolysaccharide (LPS)-stimulated IL-6 and IL-8 secretion in short-term umbilical whole blood cultures was determined. Spontaneous IL-6 (IL-8) secretion was detected in only a few samples with maximum levels of 14 (23) pg/ml. After 4 h of LPS incubation median IL-6 levels increased to 2026 (339-2547) pg/ml (VD group) and 1670 (704-2037) pg/ml (ECS group). Median IL-8 concentration after LPS stimulation was 2142 (738-4053) pg/ml in the VD group and 1483 (1036-2934) pg/ml ECS group. Interleukin-6 and IL-8 levels following LPS-stimulation in both groups markedly exceeded the values of adult controls. Stimulated cytokine secretion showed no significant difference between VD and ECS groups. Spontaneous cytokine production in cord blood is variable and related to individual cytokine expression and regulation. The pro-inflammatory response to endotoxin as determined by ex vivo LPS-stimulation of short-term whole blood cultures of term neonates, in contrast to spontaneous cytokine secretion, exceeds adult levels and appears to be independent of the mode of delivery and labour.  相似文献   

7.
8.
LPS is known to be a potent activator of macrophages and induces the production of TNF-alpha and IL-1. However, the signaling events and regulatory mechanisms required for the activation of macrophages by LPS have not been resolved precisely. We show that LPS modulates its own response in macrophages. Proteose peptone-induced murine peritoneal macrophages (P-PEM) produce significant amount of TNF-alpha and IL-1 after stimulation with LPS. However, preexposure of macrophages to low doses (less than 1 ng/ml) of LPS renders them refractory to stimulation by a second round of LPS, as evaluated by production of TNF-alpha. The loss of sensitivity to a second round of LPS was selective for TNF-alpha production as the LPS-primed macrophages retained the ability to produce IL-1. Northern blot analysis was performed with total RNA obtained from control and LPS- (1 ng/ml) primed P-PEM after 3-h stimulation with a second round of LPS. The expression of TNF-alpha mRNA was inhibited in LPS-primed P-PEM, whereas the expression of IL-1 beta mRNA was the same in control and LPS-primed P-PEM, consistent with the data of biologic activities of these two cytokines. Zymosan-induced TNF-alpha production was the same in control and LPS-primed macrophages, indicating that not all of the pathways required for TNF-alpha production were affected by LPS priming. Monokines such as human (h) rIL-1 alpha, hrTNF-alpha, hrIL-6, and murine rIFN-beta could not substitute for the action of low doses of LPS, and addition of indomethacin could not restore TNF-alpha production. These results suggest that exposure of macrophages to low doses of LPS suppresses the production of TNF-alpha, but not of IL-1, by inhibiting the expression of mRNA through a noncyclooxygenase-dependent mechanism. Thus, LPS-induced production of TNF-alpha and IL-1 in macrophages are differently regulated.  相似文献   

9.
The effects of Staphylococcus aureus enterotoxin A (SEA) and lipopolysaccharide (LPS) in cytokine production were assessed at the single cell level in cells obtained from healthy blood donors. Cytokine production was studied with UV-microscopy of fixed and permeabilized cells stained with cytokine specific monoclonal antibodies. The cytokines evaluated included tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, IL-10, IL-2, IL-4, interferon (IFN)-gamma and TNF-beta. LPS exhibited marked production of IL-1 alpha, IL-1 beta, TNF-alpha, IL-6 and IL-8. After LPS stimulation IL-1 alpha, IL-1 beta, TNF-alpha and IL-8 were the dominating products, all peaking at or before 4 hours after cell stimulation. In addition, IL-10 production was evident after 12 hours of cell stimulation. The T-lymphocyte-derived cytokines TNF-beta, IL-2, IFN-gamma and IL-4 were never detected in the cultures. All cytokine production, except IL-8, was downregulated at 96 hours. In contrast, peak production of IL-1 alpha, IL-1 beta and IL-8, which were the dominant products, occurred after 12 hours in the SEA-stimulated cultures. Further, a significant T-lymphocyte production of TNF-beta, TNF-alpha, IFN-gamma and IL-2 was found with peak production 12-48 hours after initiation. Only low amounts of IL-6 were evident. The two types of cytokine pattern and kinetics found may correspond to the different clinical conditions after invasive Gram-negative Escherichia coli vs Gram-positive Staphylococcus aureus infections in humans, with a much more rapid onset of disease after E. coli infections.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The administration of bacterial lipopolysaccharide (LPS) markedly affects pituitary secretion, and its effects are probably mediated by cytokines produced by immune cells or by the hypothalamo-pituitary axis itself. Since neurokinin A (NKA) plays a role in inflammatory responses and is involved in the control of prolactin secretion, we examined the in vivo effect of LPS on the concentration of NKA in hypothalamus and pituitary (assessed by RIA) and serum prolactin levels in male rats. One hour after the intraperitoneal administration of LPS (250 microg/rat), NKA content was decreased in the posterior pituitary but not in the hypothalamus or anterior pituitary. Three hours after injection, LPS decreased NKA concentration in the hypothalamus and anterior and posterior pituitary. In all the conditions tested, LPS significantly decreased serum prolactin. We also examined the in vitro effects of LPS (10 microg/ml), interleukin-6 (IL-6, 10 ng/ml) and tumor necrosis factor alpha (TNF-alpha, 50 ng/ml) on hypothalamic NKA release. Interleukin-6 increased NKA release without modifying hypothalamic NKA concentration, whereas neither LPS nor TNF-alpha affected them. Our results suggest that IL-6 may be involved in the increase of hypothalamic NKA release induced by LPS. NKA could participate in neuroendocrine responses to endotoxin challenge.  相似文献   

11.
12.
Monocytic cytokine profiles of fifteen children with acute lymphoblastic leukaemia (ALL) were included to determine whether malignancy per se contributes to impaired cytokine profiles in vivo and ex vivo. The ex vivo tumour necrosis factor-alpha (TNF-alpha) and interleukin 1beta (IL-1beta) production was positively correlated with the monocyte number and with the number of intracellular TNF-alpha or IL-1beta positive cells in lipopolysaccharide (LPS)-stimulated MNC cultures. The mean ex vivo TNF-alpha and IL-1beta production per 1x10(4)monocytes in these cultures was not significantly different in children at diagnosis of ALL, at remission or in controls. High IL-10 plasma levels at diagnosis of ALL had no effect on the ex vivo TNF-alpha and IL-1beta production of monocytes in LPS stimulated MNC cultures. These results show that monocytes of ALL patients have a normal intrinsic capacity to produce cytokines ex vivo. However, the decreased monocyte number is responsible for the lower TNF-alpha and IL-1beta concentrations ex vivo upon LPS stimulation.  相似文献   

13.
14.
This study was designed to examine the influence of a macrolide antibiotic, roxithromycin (RXM), on the production of pro-inflammatory cytokines, interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. In the first experiments, we examined the effect of RXM on in vitro cytokine production from lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes. The monocytes were cultured in the presence of various doses of the agent. After 24 h, the culture supernatants were obtained and assayed for IL-1beta and TNF-alpha contents by enzyme-linked immunosorbent assay. RXM suppressed the in vitro production of IL-1beta and TNF-alpha in response to LPS stimulation. This was dose dependent and first noted at a concentration of as little as 0.05 microg/ml, which is much lower than therapeutic blood levels. In the second part of the experiments, we examined the influence of RXM on the appearance of IL-1beta and TNF-alpha in mouse lung extract induced by LPS inhalation. RXM was administered orally into BALB/c mice at a single dose of 2.5 mg/kg once a day for 5-12 weeks. These mice were then instilled with LPS into the trachea and examined for the presence of cytokines in aqueous lung extracts. Pretreatment of mice with RXM for 5 weeks did not influence of the appearance of both IL-1beta and TNF-alpha in aqueous lung extracts. However, pretreatment for more than 7 weeks dramatically suppressed the cytokine appearance in the extracts.  相似文献   

15.
The effect of FK506 and cyclosporin A (CsA) on the production of interleukin 6 (IL-6) in adherent monocytes was studied at a single-cell level by the avidinbiotin- peroxidase complex methods. The percentage of IL-6-producing monocytes increased when stimulated with lipopolysaccharide (LPS) at concentrations between 10 ng/ml and 10 mug/ml, in a dose dependent manner. Both FK506 and CsA enhanced the percentage of IL-6- producing monocytes stimulated with 100 pg/ml-1 mug/ml of LPS up to values near those obtained with 10 mug/ml of LPS. The enhancement by FK506 and CsA was not seen when monocytes were stimulated with a high concentration of LPS (10 mug/ml). When monocytes were stimulated with a low concentration of LPS (10 ng/ml), FK506 and CsA enhanced IL-6 production in a dose dependent manner, at a drug concentration of 0.12 nM-1.2 muM (0.1-1 000 ng/ml) for FK506 and 0.83 nM-8.3 muM (1-10 000 ng/ml) for CsA. The optimal effect of FK506 was achieved at a concentration 7-fold lower than that of CsA. In contrast, production of turnout necrosis factor-alpha (TNFalpha and interleukin 1beta (IL-1beta) was slightly suppressed by FK506 and CsA at the concentrations tested. Moreover, pretreatment of monocytes with FK506 and CsA had a significant enhancing effect on LPS-induced IL-6 production, while treatment with FK506 or CsA after LPS stimulation had no effects on IL-6 production, suggesting that the enhancing effect of each drug is exerted before LPS stimulation or at an early stage of the post-receptor pathway after LPS stimulation. These experiments demonstrate that FK506 and CsA can selectively enhance IL-6 production in monocytes under certain conditions in vitro and, possibly, also in vivo.  相似文献   

16.
Leptin is capable of modulating the immune response. Proinflammatory cytokines induce leptin production, and we now demonstrate that leptin can directly activate the inflammatory response. RNA expression for the leptin receptor (Ob-R) was detectable in human PBMCs. Ob-R expression was examined at the protein level by whole blood flow cytometry using an anti-human Ob-R mAb 9F8. The percentage of cells expressing leptin receptor was 25 +/- 5% for monocytes, 12 +/- 4% for neutrophils, and 5 +/- 1% for lymphocytes (only B lymphocytes). Incubation of resting PBMCs with leptin induced rapid expression of TNF-alpha and IL-6 mRNA and a dose-dependent production of TNF-alpha and IL-6 by monocytes. Incubation of resting PBMCs with high-dose leptin (250 ng/ml, 3-5 days) induced proliferation of resting cultured PBMCs and their secretion of TNF-alpha (5-fold), IL-6 (19-fold), and IFN-gamma (2.5-fold), but had no effect on IL-4 secretion. The effect of leptin was distinct from, and additive to, that seen after exposure to endotoxin or activation by the mixed lymphocyte reaction. In conclusion, Ob-R is expressed on human circulating leukocytes, predominantly on monocytes. At high doses, leptin induces proinflammatory cytokine production by resting human PBMCs and augments the release of these cytokines from activated PBMCs in a pattern compatible with the induction of Th1 cytokines. These results demonstrate that leptin has a direct effect on the generation of an inflammatory response. This is of relevance when considering leptin therapy and may partly explain the relationship among leptin, proinflammatory cytokines, insulin resistance, and obesity.  相似文献   

17.
LPS pretreatment of human pro-monocytic THP-1 cells induces tolerance to secondary LPS stimulation with reduced TNFalpha production. However, secondary stimulation with heat-killed Staphylococcus aureus (HKSa) induces priming as evidenced by augmented TNFalpha production. The pro-inflammatory cytokine, IFNgamma, also abolishes suppression of TNFalpha in LPS tolerance. The effect of LPS tolerance on HKSa and IFNgamma-induced inflammatory mediator production is not well defined. We hypothesized that LPS, HKSa and IFNgamma differentially regulate pro-inflammatory mediators and chemokine production in LPS-induced tolerance. THP-1 cells were pretreated for 24 h with LPS (100 ng/ml) or LPS (100 ng/ml) + IFNgamma (1 microg/ml). Cells were subsequently stimulated with LPS or HKSa (10 microg/ml) for 24 h. The production of the cytokines TNFalpha, IL-6, IL-1beta, and GMCSF and the chemokine IL-8 were measured in supernatants. LPS and HKSa stimulated TNFalpha (3070 +/- 711 pg/ml and 217 +/- 9 pg/ml, respectively) and IL-6 (237 +/- 8.9 pg/ml and 56.2 +/- 2.9 pg/ml, p < 0.05, n = 3, respectively) in control cells compared to basal levels (< 25 pg/ml). LPS induced tolerance to secondary LPS stimulation as evidenced by a 90% (p < 0.05, n = 3) reduction in TNFalpha. However, LPS pretreatment induced priming to HKSa as demonstrated by increased TNFalpha (2.7 fold, from 217 to 580 pg/ml, p < 0.05, n = 3 ). In contrast to suppressed TNFalpha, IL-6 production was augmented to secondary LPS stimulation (9 fold, from 237 to 2076 pg/ml, p < 0.01, n = 3) and also primed to HKSa stimulation (62 fold, from 56 to 3470 pg/ml, p < 0.01, n = 3). LPS induced IL-8 production and to a lesser extent IL-1beta and GMCSF. LPS pretreatment did not affect secondary LPS stimulated IL-8 or IL-1beta, although HKSa stimulation augmented both mediators. In addition, IFNgamma pretreatment reversed LPS tolerance as evidenced by increased TNFalpha levels while IL-6, IL-1beta, and GMCSF levels were further augmented. However, IL-8 production was not affected by IFNgamma. These data support our hypothesis of differential regulation of cytokines and chemokines in gram-negative- and gram-positive-induced inflammatory events. Such changes may have implications in the pathogenesis of polymicrobial sepsis.  相似文献   

18.
Endotoxin (lipopolysaccharide, LPS) has the property of inducing tolerance to its own biological effects. This phenomenon has been extensively studied in animal models but only few studies exist on the regulation in humans. Here we describe experiments designed to determine the cytokine regulation and cellular changes in humans during induction of LPS tolerance after repeated LPS injections. Intravenous administration of purified LPS Salmonella abortus equi to cancer patients induces high amounts of circulating tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte colony-stimulating factor (G-CSF), and macrophage colony-stimulating factor (M-CSF). Repeated injections of LPS at daily intervals resulted in a marked downregulation of the cytokine response and in the case of TNF-alpha, IL-8, G-CSF, and M-CSF the cytokine response was reduced to baseline levels. In contrast, significant increases in serum IL-6 were detected up to day 5 of repeated LPS injections. Hematological changes included transient decreases in WBCs affecting granulocytes, monocytes, and lymphocytes, followed by a marked granulocytosis. The drop in WBCs remained unaltered throughout the 5 day course of repeated LPS injections whereas the granulocyte overshoot recovery diminished gradually. When PBMCs of the cancer patients were restimulated ex vivo a marked enhancement of the capacity to produce TNF-alpha, IL-113, and IL-6 occurred, which is in contrast to the decreasing TNF-alpha serum levels obtained in vivo. In parallel, a shift in monocyte subpopulations from CD14+/CD16- to CD14+/CD16+ cells was observed. The data provide evidence that different mechanisms are implicated in the cytokine downregulation following repeated LPS injections to cancer patients. Furthermore, PBMCs from LPS tolerant patients do not demonstrate a reduction in their capacity to produce cytokines.  相似文献   

19.
Although well recognized for its anti-inflammatory effect on gene expression in stimulated monocytes and macrophages, IL-4 is a pleiotropic cytokine that has also been shown to enhance TNF-alpha and IL-12 production in response to stimulation with LPS. In the present study we expand these prior studies in three areas. First, the potentiating effect of IL-4 pretreatment is both stimulus and gene selective. Pretreatment of mouse macrophages with IL-4 for a minimum of 6 h produces a 2- to 4-fold enhancement of LPS-induced expression of several cytokines and chemokines, including TNF-alpha, IL-1alpha, macrophage-inflammatory protein-2, and KC, but inhibits the production of IL-12p40. In addition, the production of TNF-alpha by macrophages stimulated with IFN-gamma and IL-2 is inhibited by IL-4 pretreatment, while responses to both LPS and dsRNA are enhanced. Second, the ability of IL-4 to potentiate LPS-stimulated cytokine production appears to require new IL-4-stimulated gene expression, because it is time dependent, requires the activation of STAT6, and is blocked by the reversible protein synthesis inhibitor cycloheximide during the IL-4 pretreatment period. Finally, IL-4-mediated potentiation of TNF-alpha production involves specific enhancement of mRNA translation. Although TNF-alpha protein is increased in IL-4-pretreated cells, the level of mRNA remains unchanged. Furthermore, LPS-stimulated TNF-alpha mRNA is selectively enriched in actively translating large polyribosomes in IL-4-pretreated cells compared with cells stimulated with LPS alone.  相似文献   

20.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号