首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cytotoxic activity of the secreted bacterial toxin colicin E9 is due to a non-specific DNase housed in the C-terminus of the protein. Double-resonance and triple-resonance NMR studies of the 134-amino acid15 N- and 13C/15N-labelled DNase domain are presented. Extensive conformational heterogeneity was evident from the presence of far more resonances than expected based on the amino acid sequence of the DNase, and from the appearance of chemical exchange cross-peaks in TOCSY and NOESY spectra. EXSY spectra were recorded to confirm that slow chemical exchange was occurring. Unambiguous sequence-specific resonance assignments are presented for one region of the protein, Pro65-Asn72, which exists in two slowly exchanging conformers based on the identification of chemical exchange cross-peaks in 3D 1H-1H-15N EXSY-HSQC, NOESY-HSQC and TOCSY-HSQC spectra, together with C and C chemical shifts measured in triple-resonance spectra and sequential NH NOEs. The rates of conformational exchange for backbone amide resonances in this stretch of amino acids, and for the indole NH of either Trp22 or Trp58, were determined from the intensity variation of the appropriate diagonal and chemical exchange cross-peaks recorded in 3D1 H-1H-15N NOESY-HSQC spectra. The data fitted a model in which this region of the DNase has two conformers, NA and NB, which interchange at 15 °C with a forward rate constant of 1.61 ± 0.5 s-1 and a backward rate constant of 1.05 ± 0.5 s-1. Demonstration of this conformational equilibrium has led to a reappraisal of a previously proposed kinetic scheme describing the interaction of E9 DNase with immunity proteins [Wallis et al. (1995) Biochemistry, 34, 13743–13750 and 13751–13759]. The revised scheme is consistent with the specific inhibitor protein for the E9 DNase, Im9, associating with both the NA and NB conformers of the DNase and with binding only to the NB conformer detected because the rate of dissociation of the complex of Im9 and the NA conformer, NAI, is extremely rapid. In this model stoichiometric amounts of Im9 convert, the E9 DNase is converted wholly into the NBI form. The possibility that cis–trans isomerisation of peptide bonds preceding proline residues is the cause of the conformational heterogeneity is discussed. E9 DNase contains 10 prolines, with two bracketing the stretch of amino acids that have allowed the NA NB interconversion to be identified, Pro65 and Pro73. The model assumes that one or both of these can exist in either the cis or trans form with strong Im9 binding possible to only one form.  相似文献   

3.
Knowledge about the conformational dynamics of a protein is key to understanding its biochemical and biophysical properties. In the present work we investigated the dynamic properties of the enzymatic domain of DNase colicins via time-resolved fluorescence and anisotropy decay analysis in combination with steady-state acrylamide quenching experiments. The dynamic properties of the apoenzyme were compared to those of the E9 DNase ligated to the transition metal ion Zn(2+) and the natural inhibitor Im9. We further investigated the contributions of each of the two tryptophans within the E9 DNase (Trp22 and Trp58) using two single-tryptophan mutants (E9 W22F and E9 W58F). Wild-type E9 DNase, E9 W22F, and E9 W58F, as well as Im9, showed multiple lifetime decays. The time-resolved and steady-state fluorescence results indicated that complexation of E9 DNase with Zn(2+) induces compaction of the E9 DNase structure, accompanied by immobilization of Trp22 along with a reduced solvent accessibility for both tryptophans. Im9 binding resulted in immobilization of Trp22 along with a decrease in the longest lifetime component. In contrast, Trp58 experienced less restriction on complexation of E9 DNase with Im9 and showed an increase in the longest lifetime component. Furthermore, the results point out that the Im9-induced changes in the conformational dynamics of E9 DNase are predominant and occur independently of the Zn(2+)-induced conformational effects.  相似文献   

4.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

5.
The 134 amino acid DNase domain of colicin E9 contains a zinc-finger-like HNH motif that binds divalent transition metal ions. We have used 1D 1H and 2D 1H-15N NMR methods to characterise the binding of Co2+, Ni2+ and Zn2+ to this protein. Data for the Co2+-substituted and Ni2+-substituted proteins show that the metal ion is coordinated by three histidine residues; and the NMR characteristics of the Ni2+-substituted protein show that two of the histidines are coordinated through their N(epsilon2) atoms and one via its N(delta1). Furthermore, the NMR spectrum of the Ni2+-substituted protein is perturbed by the presence of phosphate, consistent with an X-ray structure showing that phosphate is coordinated to bound Ni2+, and by a change in pH, consistent with an ionisable group at the metal centre with a pKa of 7.9. Binding of an inhibitor protein to the DNase does not perturb the resonances of the metal site, suggesting there is no substantial conformation change of the DNase HNH motif on inhibitor binding. 1H-15N NMR data for the Zn2+-substituted DNase show that this protein, like the metal-free DNase, exists as two conformers with different 1H-15N correlation NMR spectra, and that the binding of Zn2+ does not significantly perturb the spectra, and hence structures, of these conformers beyond the HNH motif region.  相似文献   

6.
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.  相似文献   

7.
H NMR resonances of [cyclo (9----18) Lys1, Gly6]bradykinin (CBK) in (CD3)2SO and H2O solution have been assigned by combined analysis of two-dimensional COSY and NOESY spectra. The presence of two slowly interchangeable conformers of CBK in (CD3)2SO is established, the minor conformer not exceeding 15% in the population. The minor conformer is absent from the aqueous solution, chemical shifts of the CBK and bradykinin NH and C alpha H protons differ insignificantly. The major CBK conformer contains at least two X-Pro trans-peptide groups and three amide protons NH Phe5, NH Arg9 and N zeta H Lys1 protected from solvent. A system of cross-peaks from the NOESY spectra of CBK in (CD3)2SO has been analysed and the maximum distance between backbone protons and neighbouring amino acid residues evaluated. The experimental data agree well with the assumed type II beta-bend in the sequence Pro2-Pro3-Gly4-Phe5. Spatial structure models for the backbone fragment 6-9 of CBK containing two intramolecular hydrogen bonds that involve the NH Arg9 and N zeta H Lys1 protons and the carbonyl groups of Phe5 and Gly4 are proposed.  相似文献   

8.
Cyclophilin (163 residues, Mr 17737), a peptidyl prolyl cis-trans isomerase, is a cytosolic protein that specifically binds the potent immunosuppressant cyclosporin A (CsA). The native form of the major bovine thymus isoform has been analyzed by 2D NMR methods, COSY, HOHAHA, and NOESY, in aqueous media. The 156 main-chain amides in CyP yield 126 observable NH/alpha CH couplings (81%, Gly pairs counted as 1). Following exhaustive D2O exchange, 44 amide resonances remain visible. Further analysis of the NH/NH, NH/alpha CH, and alpha CH/alpha CH regions of the COSY and NOESY data sets indicates that the residual amides in D2O form a coherent hydrophobic domain which yields 2D NMR features suggestive of a beta-sheet. Many (43/126) of the amide resonances have been classified according to amino acid type. In the aromatic region of the spectra, the assignment of the ring spin systems is nearly complete (12/15 Phe, 2/2 Tyr, 1/1 Trp, and 3/4 His). This has successfully lead to the complete assignment of all of their beta CH's, main-chain alpha CH resonances, and many of the backbone amide resonances (8/12 Phe, 2/2 Tyr, 1/1 Trp, and 2/3 His). In other regions of the spectrum, the side-chain and main-chain resonances for 10/23 Gly, 9/9 Ala, 5/11 Thr, 5/9 Val, and 1/6 Leu have been completely assigned. The drug-free cyclophilin and CsA-bound cyclophilin form two discrete protein structures that are in slow exchange on the NMR time scale. Comparison of the fingerprint regions from the COSY spectra obtained from the two forms of the protein reveals a minimum of 16 cross-peaks which are clearly shifted upon complexation. In fact, on the basis of chemical shift changes observed in assigned side-chain and main-chain resonances, only a relatively few of the amino acid residues identified to date are perturbed by complex formation. These include 3 Phe (8, 12, and 14) and the Trp in the aromatic region and 2 Ala (7 and 8) in the Ala/Thr region. In the upfield-shifted methyl region, an assigned Leu and Val spin system and a spin system labeled X10 (an Ile or Leu) are affected by complex formation. In addition, a new aliphatic spin system, labeled X11, which shows a close spatial relationship to the perturbed Phe12, is observed in this region of the spectrum. In summary, the regions of the protein altered by complex formation can be divided into two categories: a hydrophobic and a H2O-accessible domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Previous work shows that Im9 folds in a two-state transition while its homologue Im7 folds in a three-state transition via an on-pathway kinetic intermediate state (KIS), with this difference being related to frustration in the structure of Im7. We have used NMR spectroscopy to study conformational dynamics connected to the frustration. A combination of equilibrium peptide N1H/N2H exchange, model-free analyses of backbone NH relaxation data and relaxation dispersion (RD)-NMR shows that the native state of Im7 is in equilibrium with an intermediate state that is lowly populated [equilibrium intermediate state (EIS)]. Comparison of kinetic and thermodynamic parameters describing the EIS native-state equilibrium obtained by RD-NMR with previously reported parameters describing the KIS native-state equilibrium obtained from stopped-flow fluorescence studies of refolding His-tagged Im7 shows that the KIS and the EIS are the same species. 15N chemical shifts of the EIS obtained from the RD-NMR analysis show that residues forming helix III in the native state are unstructured in the EIS while other residues experiencing frustration in the native state are in structured regions of the EIS. We show that binding of Im7 and its L53A/I54A variant (which resembles the EIS as shown in previous work) to the cognate partner for Im7, the DNase domain of colicin E7, causes the dynamic processes associated with the frustration to be dampened.  相似文献   

10.
1-15N-L-Tryptophan (1-15N-L-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with L-serine, catalyzed by tryptophan synthase. 1-15N-L-Trp was complexed with wild-type tryptophan synthase and beta-subunit mutants, betaK87T, betaD305A, and betaE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium alpha-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-L-Trp bound to the beta-active site. No 15N-HSQC signal was detected for 1-15N-L-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-L-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-L-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium alpha-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of betaK87T and betaE109D mutant Trp synthase with 1-15N-L-Trp showed a similar cross peak either in the presence or absence of disodium alpha-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the betaD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium alpha-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium alpha-glycerophosphate but was able to form a closed conformation in the presence of disodium alpha-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-L-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of L-Trp with NaCl and/or disodium alpha-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria.  相似文献   

11.
A general procedure for site-specific and reversible labeling of proteins with transition metal ions is described. The method is based on the use of the novel ligand 1-(2-thioethyl)-1,4,7,10-tetraazacyclododecane (TETAC), which specifically and readily reacts with thiol groups. Synthesis of TETAC from 1,4,7,10-tetraazacyclododecane (cyclen) and ethylene disulfide yielded a mixture of products, including TETAC and its oxidized disulfide in 56.4% yield. The procedure for labeling proteins with TETAC is straightforward and led to separation of the TETAC-containing product mixture through gel-filtration chromatography. The resulting protein-TETAC adducts were shown to contain a single TETAC group which bound transition metal ions. Protein-TETACCu2+ had a UV-Vis spectrum similar to that of Cu2+(cyclen) while the protein-TETACCo2+ complex had a different spectrum to that of the cobalt-containing cyclen. This is because attachment to the protein prevented the Co2+-containing TETAC from dimerising and binding O2, which the cobalt-containing cyclen is able to do. The proteins used to develop this labeling procedure were the DNase domain of colicin E9 and its inhibitor protein Im9. Unlike Im9, the DNase does not contain a cysteine residue but the Ser30Cys variant of the DNase was prepared by site-directed mutagenesis. Both Im9 and the Ser30Cys DNase were modified with TETAC and the modifications shown to be structurally and functionally benign through NMR spectroscopy of the modified Im9 and fluorescence spectroscopy binding assays in which DNase-Im9 complexes were formed. The simplicity of the method, and its general application to any protein through the introduction of cysteine by site-directed mutagenesis, suggests it will be of wide use in protein chemistry applications.  相似文献   

12.
From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 degrees C, 30 degrees C, and 40 degrees C for a tightly bound 15N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.  相似文献   

13.
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.  相似文献   

14.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

15.
The rate of the H-D exchange of the peptide NH atoms of the different forms of human Hb was studied at the range of pH 5-10 and temperature 10-63 degrees C by the IR spectroscopy. The pH-dependence of the H-D exchange rate is accordance with the EX2 mechanism. Two pH-dependent conformers of ligand forms of Hb existes at 10-30 degrees C with lower probability of local fluctuations of the alkaline conformer. The difference between two conformers vanishes at 40 degrees C with the appearance of the third conformer with higher probability of local fluctuations. The deoxyHb at 20 degrees C and pH range 6-9 has no pH-dependent conformers and the probability of local fluctuations is considerably reduced in comparison to the acid conformer of ligand Hb. Upon the destabilization of the ligand Hb structure by the pH decreasing to 5.0 at 20 degrees C or the temperature increasing up to 50-60 degrees C at pH 7.1 the global fluctuations of the native structure are intensified providing the H-D exchange of the slowest exchanging NH atoms. The nature of the local and global fluctuations and possible similarity between the two pH-dependent conformers of ligand Hb and its functional R and R2 states revealed by the X-ray analysis and NMR spectroscopy were discussed.  相似文献   

16.
17.
Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn(2+). Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn(2+)-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability.  相似文献   

18.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

19.
We investigate 25-34 nucleotide RNA sequences, that have been rationally designed to adopt two different secondary structures that are in thermodynamic equilibrium. Experimental evidence for the co-existence of the two conformers results from the NH...N 1H NMR spectra. When compared to the NH...N 1H NMR spectra of appropriate reference sequences the equilibrium position is easily quantifiable even without the assignment of the individual NH resonances. The reference sequences represent several Watson-Crick base-paired double helical segments, each encountered in either of the two conformers of the bistable target sequence. In addition, we rationalize the influence of nucleotide mutations on the equilibrium position of one of the bistable RNA sequences. The approach further allows a detailed thermodynamic analysis and the evaluation of secondary structure predictions for multistable RNAs obtained by computational methods.  相似文献   

20.
This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the (1)H-(15)N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the (1)H-(15)N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, K (d)= approximately 40 microM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号