首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp33, an Escherichia coli cytosolic chaperone, is inactive under normal conditions but becomes active upon oxidative stress. It was previously shown to dimerize upon activation in a concentration- and temperature-dependent manner. This dimer was thought to bind to aggregation-prone target proteins, preventing their aggregation. In the present study, we report small angle x-ray scattering (SAXS), steady state and time-resolved fluorescence, gel filtration, and glutaraldehyde cross-linking analysis of full-length Hsp33. Our circular dichroism and fluorescence results show that there are significant structural changes in oxidized Hsp33 at different temperatures. SAXS, gel filtration, and glutaraldehyde cross-linking results indicate, in addition to the dimers, the presence of oligomeric species. Oxidation in the presence of physiological salt concentration leads to significant increases in the oligomer population. Our results further show that under conditions that mimic the crowded milieu of the cytosol, oxidized Hsp33 exists predominantly as an oligomeric species. Interestingly, chaperone activity studies show that the oligomeric species is much more efficient compared with the dimers in preventing aggregation of target proteins. Taken together, these results indicate that in the cell, Hsp33 undergoes conformational and quaternary structural changes leading to the formation of oligomeric species in response to oxidative stress. Oligomeric Hsp33 thus might be physiologically relevant under oxidative stress.  相似文献   

2.
The GdmCl-induced equilibrium unfolding and dissociation of the dimeric yeast prion protein Ure2, and its prion domain deletion mutants Delta 15-42Ure2 and 90Ure2, was studied by small angle X-ray scattering (SAXS) using synchrotron radiation and by chemical cross-linking with dithiobis(succinimidyl propionate) (DTSP). The native state is globular and predominantly dimeric prior to the onset of unfolding. R(g) values of 32 and 45A were obtained for the native and 5M GdmCl denatured states of Delta 15-42Ure2, respectively; the corresponding values for 90Ure2 were 2-3A lower. SAXS suggests residual structure in the 4M GdmCl denatured state and chemical cross-linking detects persistence of dimeric structure under these conditions. Hexamers consisting of globular subunits could be detected by SAXS at high protein concentration under partially denaturing conditions. The increased tendency of partially folded states to form small oligomers points to a mechanism for prion formation.  相似文献   

3.
Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m. Small conformational changes, consistent with local movements of loops or the mobile N- or C-termini of arrestin, were observed in the presence of a phosphopeptide corresponding to the C-terminus of rhodopsin, and with an R175Q mutant. Because both the phosphopeptide and the R175Q mutation promote binding to unphosphorylated R*, we conclude that arrestin is activated by subtle conformational changes. Most of the arrestin will be in a dimeric state in vivo. Using the arrestin structure as a guide [Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. (1999) Cell 97, 257-269], we have identified a model for the arrestin dimer that is consistent with our SAXS data. In this model, dimerization is mediated by the C-terminal domain of arrestin, leaving the N-terminal domains free for interaction with phosphorylated R*.  相似文献   

4.
In this study, we use FTIR spectroscopy to probe the conformational changes of beta-lactoglobulin (beta-LG)-the main constituent of whey proteins-as subjected to enzymatic cross-linking by transglutaminase. We investigate both the amide I region (1600-1700 cm(-1)) and the C-H stretching region (2800-3100 cm(-1)). In the amide I region, spectra of denatured conformations of beta-LG, known to be necessary for cross-linking, differ according to the denaturation procedure, i.e., chemical or thermal treatment. Denaturation by chemical denaturants, dithiothreitol (DTT) or beta-mercaptoethanol, show no effect on the alpha-helix, while shifting the monomer dimer equilibrium toward higher monomer concentration. On the other hand, denaturing by thermal treatment dissociates the beta-sheets in the native structure, leading to new intermolecular beta-sheets being formed. Preheated then enzyme cross-linked beta-LG molecules show very similar spectra in the amide I region to the molecules with no cross-linking, indicating minimal effects of the cross-links on the carbonyl stretching mode. However, chemically denatured (using beta-mercaptoethanol) then enzyme cross-linked beta-LG molecules show noticeable diminution in the alpha-helix band and formation of strong hydrogen-bonded intermolecular beta-sheets. In the C-H stretching region, preheated then enzyme cross-linked beta-LG molecules exhibit a different degree of exposure of aliphatic amino acids due to the enzyme action. The same behavior is observed for DTT-treated then enzyme cross-linked beta-LG molecules. Generally, the changes in the C-H stretching region clearly indicate that hydrophobic interactions are altered upon enzymatic cross-linking.  相似文献   

5.
Siebenlist KR  Meh DA  Mosesson MW 《Biochemistry》2000,39(46):14171-14175
There are conflicting ideas regarding the location of the carboxyl-terminal regions of cross-linked gamma-chain dimers in double-stranded fibrin fibrils. Some investigators believe that the chains are always oriented longitudinally along each fibril strand and traverse the contacting ends of abutting fibrin D domains ("DD-long" cross-linking). Other investigations have indicated instead that the chains are situated transversely between adjacent D domains in opposing fibril strands (transverse cross-linking). To distinguish between these two possibilities, the gamma dimer composition of factor XIIIa-cross-linked fibrin/fibrinogen complexes that had been formed through noncovalent D/E interactions between fibrinogen D domains and fibrin E domains was examined. Two factor XIIIa-mediated cross-linking conditions were employed. In the first, fibrin/fibrinogen complexes were formed between (125)I-labeled fibrinogen 2 ("peak 2" fibrinogen), each heterodimeric molecule containing one gamma(A) and one larger gamma' chain, and nonlabeled fibrin 1 molecules ("peak 1" fibrin), each containing two gamma(A) chains. If DD-long cross-linking occurred, (125)I-labeled gamma(A)-gamma(A), gamma(A)-gamma', and gamma'-gamma'dimers in a 1:2:1 ratio would result. Transverse cross-linking would yield a 1:1 mixture of (125)I-labeled gamma(A)-gamma(A) and gamma(A)-gamma' dimers, without any gamma'-gamma' dimers. Autoradiographic analyses of reduced SDS-PAGE gels from protocol 1 revealed (125)I-labeled gamma(A)-gamma(A) and gamma(A)-gamma' dimers at a ratio of approximately 1:1. No labeled gamma'-gamma' dimers were detected. Protocol 2 used a converse mixture, (125)I-fibrin 2 and nonlabeled fibrinogen 1. DD-long cross-linking of this mixture would yield only nonradioactive gamma(A)-gamma(A) dimers, whereas transverse cross-linking would yield a 1:1 mixture of (125)I-labeled gamma(A)-gamma(A) and gamma(A)-gamma' dimers. Autoradiographic analyses of this mixture yielded (125)I-labeled gamma(A)-gamma(A) and gamma(A)-gamma' dimers in a 1:1 ratio. These findings provide no evidence that longitudinal (DD-long) gamma chain positioning occurs in cross-linked fibrin and indicate instead that most, if not all, gamma-chain positioning in an assembled fibrin polymer is transverse.  相似文献   

6.
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer’s disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.  相似文献   

7.
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post‐translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non‐enzymatic methods to synthesize Ub chains of well‐defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non‐native linkages; however, few studies have examined the extent to which non‐native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non‐native linkages. Using small‐angle X‐ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non‐native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady‐state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non‐native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non‐native linkages can serve as surrogate substrates for explorations of Ub function.  相似文献   

8.
Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures.   总被引:15,自引:11,他引:4       下载免费PDF全文
Sucrose gradient sedimentation analysis of rotavirus SA11-infected Ma104 cells revealed the presence of oligomers of VP7, the structural glycoprotein, and NS28, the nonstructural glycoprotein. Cross-linking the proteins, either before or after sucrose gradient centrifugation, stabilizes oligomers, which can be analyzed by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation. The major NS28 oligomer was tetrameric, though dimers and higher-order structures were observed as well. VP7 formed predominantly dimers, and again tetramers and higher oligomeric forms were present. Each oligomer of VP7 and NS28 sedimented at the same characteristic rate through the sucrose gradient either in the presence or absence of cross-linking. Monomers could not be cross-linked to form oligomers, demonstrating that cross-linked oligomers were not artifactually derived from monomers. Reversing the cross-linking of immunoprecipitated VP7 on reducing SDS-PAGE resulted in the appearance of only the monomeric form of VP7. Dissociation of the NS28 oligomers resulted in stable dimers as well an monomers. In the faster-sedimenting fractions, a 16S to 20S complex, which contained the rotavirus outer shell proteins VP7 and VP4 cross-linked to NS28, was observed. These complexes were shown not to be associated with any known subviral particle. The association of VP4, NS28, and VP7 may represent sites on the endoplasmic reticulum membrane that participate in the budding of the single-shelled particles into the lumen of the endoplasmic reticulum, where maturation to double-shelled particles occurs.  相似文献   

9.
Oligodeoxyribonucleoside methylphosphonates derivatized at the 5' end with 4'-(amino-alkyl)-4,5',8-trimethylpsoralen were prepared. The interaction of these psoralen-derivatized methylphosphonate oligomers with synthetic single-stranded DNAs 35 nucleotides in length was studied. Irradiation of a solution containing the 35-mer and its complementary methylphosphonate oligomer at 365 nm gave a cross-linked duplex produced by cycloaddition between the psoralen pyrone ring of the derivatized methylphosphonate oligomer and a thymine base of the DNA. Photoadduct formation could be reversed by irradiation at 254 nm. The rate and extent of cross-linking were dependent upon the length of the aminoalkyl linker between the trimethylpsoralen group and the 5' end of the methylphosphonate oligomer. Methylphosphonate oligomers derivatized with 4'-[[N-(2-aminoethyl)amino]methyl]- 4,5',8-trimethylpsoralen gave between 70% and 85% cross-linked product when irradiated for 20 min at 4 degrees C. Further irradiation did not increase cross-linking, and preirradiation of the psoralen-derivatized methylphosphonate oligomer at 365 nm reduced or prevented cross-linking. These results suggest that the methylphosphonate oligomers undergo both cross-linking and deactivation reactions when irradiated at 365 nm. The extent of cross-linking increased up to 10 microM oligomer concentration and dramatically decreased at temperatures above the estimated Tm of the methylphosphonate oligomer-DNA duplex. The cross-linking reaction was dependent upon the fidelity of base-pairing interactions between the methylphosphonate oligomers and the single-stranded DNA. Noncomplementary oligomers did not cross-link, and the extent of cross-linking of oligomers containing varying numbers of noncomplementary bases was greatly diminished or eliminated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Heterotrimeric AMP-activated protein kinase (AMPK) is crucial for energy homeostasis of eukaryotic cells and organisms. Here we report on (i) bacterial expression of untagged mammalian AMPK isoform combinations, all containing gamma(1), (ii) an automated four-dimensional purification protocol, and (iii) biophysical characterization of AMPK heterotrimers by small angle x-ray scattering in solution (SAXS), transmission and scanning transmission electron microscopy (TEM, STEM), and mass spectrometry (MS). AMPK in solution at low concentrations (~1 mg/ml) largely consisted of individual heterotrimers in TEM analysis, revealed a precise 1:1:1 stoichiometry of the three subunits in MS, and behaved as an ideal solution in SAXS. At higher AMPK concentrations, SAXS revealed concentration-dependent, reversible dimerization of AMPK heterotrimers and formation of higher oligomers, also confirmed by STEM mass measurements. Single particle reconstruction and averaging by SAXS and TEM, respectively, revealed similar elongated, flat AMPK particles with protrusions and an indentation. In the lower AMPK concentration range, addition of AMP resulted in a significant decrease of the radius of gyration by approximately 5% in SAXS, which indicates a conformational switch in AMPK induced by ligand binding. We propose a structural model involving a ligand-induced relative movement of the kinase domain resulting in a more compact heterotrimer and a conformational change in the kinase domain that protects AMPK from dephosphorylation of Thr(172), thus positively affecting AMPK activity.  相似文献   

11.
Bacteriophage capsids are a striking example of a robust yet dynamic genome delivery vehicle. Like most phages, HK97 undergoes a conformational maturation that converts a metastable Prohead into the mature Head state. In the case of HK97, maturation involves a significant expansion of the capsid and concomitant cross-linking of capsid subunits. The final state, termed Head-II, is a 600 angstroms diameter icosahedral structure with catenated subunit rings. Cryo-EM, small angle X-ray scattering (SAXS), and biochemical assays were used previously to characterize the initial (Prohead-II) and final states (Head-II) as well as four maturation intermediates. Here we extend the characterization of the acid-induced expansion of HK97 in vitro by monitoring changes in intrinsic fluorescence, circular dichroism (CD), and SAXS. We find that the greatest changes in all observables occur at an early stage of maturation. Upon acidification, fluorescence emissions from HK97 exhibit a blueshift and decrease in intensity. These spectral changes reveal two kinetic phases of the expansion reaction. The early phase exhibits sensitivity to pH, increasing in rate nearly 200-fold when acidification pH is lowered from 4.5 to 3.9. The second, slower phase reported by fluorescence is relatively insensitive to pH. Time-resolved SAXS experiments report an increase in overall particle dimension that parallels the fluorescence changes for the early phase. Native agarose gel assays corroborated this finding. By contrast, probes of CD at far-UV indicate that secondary structural changes precede the early expansion phase reported by SAXS and fluorescence. Based on the crystallographic structure of Head-II and the pseudo-atomic model of Prohead-II, we interpret these changes as reflecting the conversion of subunit N-terminal arms (N-arm) from unstructured polypeptide to the mixture of beta-strand and beta-turn observed in the Head-II crystal structure. Refolding of the N-arm may thus represent the conformational trigger that initiates the irreversible expansion of the phage capsid.  相似文献   

12.
Antibodies directed against the epidermal growth factor receptor (EGFR) offer a potentially powerful therapeutic approach against cancers driven by the EGFR pathway. EGFR antibodies are believed to halt cell surface activation by blocking ligand-induced receptor tyrosine kinase activation, i.e., ligand binding, a change in conformation, or the monomer-dimer transition. In this work, we demonstrate that wild-type EGFR and the truncated de2-7-EGFR (tumor-associated mutant) formed unliganded homo-oligomers and examined the effects of two clinically relevant antibodies on the conformation and quaternary state of these ligand-free EGFR oligomers on the surface of cells. The EGFR antibodies were mAb528, a ligand-blocking antibody that binds domain III, and mAb806, a conformationally sensitive antibody that binds near the dimer interface in domain II. We used a model cellular system, BaF/3 cells, with GFP-tagged receptors in the absence of interference from secreted ligands or other erbB receptor members. Different antibody-mediated effects (conformational transition, receptor cross-linking, or receptor dissociation) were distinguished by combining two complementary biophysical techniques: image correlation spectroscopy (submicrometer scale clustering) and homo-Forster resonance energy transfer (association and/or conformation on a 1-10 nm scale). mAb528 cross-linked EGFR into an inactive EGFR dimer of dimers but had no effect when added to de2-7-EGFR oligomers. mAb806 had a minor effect on EGFR dimers as expected from its poor binding to a conformationally shielded epitope on wtEGFR but bound de2-7-EGFR oligomers, causing a conformational change in the intracellular C-terminal GFP-tagged tail. The combination of the two antibodies had synergistic effects, increasing the level of cross-linking of de2-7-EGFR, but did not lead to enhanced cross-linking of EGFR. The results reveal new modes of receptor-antibody interactions for EGFR and de2-7-EGFR.  相似文献   

13.
In this work, quaternary conformational studies of peanut agglutinin (PNA) have been carried out using small-angle X-ray scattering (SAXS). PNA was submitted to three different conditions: pH variation (2.5, 4.0, 7.4 and 9.0), guanidine hydrochloride presence (0.5-2M) at each pH value, and temperature ranging from 25 to 60°C. All experiments were performed in the absence and presence of T-antigen to evaluate its influence on the lectin stability. At room temperature and pH 4.0, 7.4 and 9.0, the SAXS curves are consistent with the PNA scattering in its crystallographic native homotetrameric structure, with monomers in a jelly roll fold, associated by non-covalent bonds resulting in an open structure. At pH 2.5, the results indicate that PNA tends to dissociate into smaller sub-units, as dimers and monomers, followed by a self-assembling into larger aggregates. Furthermore, the conformational stability under thermal denaturation follows the pH sequence 7.4>9.0>4.0>2.5. Such results are consistent with the conformational behavior found upon GndHCl influence. The presence of T-antigen does not affect the protein quaternary structure in all studied systems within the SAXS resolution.  相似文献   

14.
Enzyme function requires conformational changes to achieve substrate binding, domain rearrangements, and interactions with partner proteins, but these movements are difficult to observe. Small-angle X-ray scattering (SAXS) is a versatile structural technique that can probe such conformational changes under solution conditions that are physiologically relevant. Although it is generally considered a low-resolution structural technique, when used to study conformational changes as a function of time, ligand binding, or protein interactions, SAXS can provide rich insight into enzyme behavior, including subtle domain movements. In this perspective, we highlight recent uses of SAXS to probe structural enzyme changes upon ligand and partner-protein binding and discuss tools for signal deconvolution of complex protein solutions.  相似文献   

15.
Investigation of the dynamic behavior of irradiated kappa carrageenan (in KCl) as a function of irradiation dose and temperature was done by dynamic light scattering (DLS). The intensity correlation function (ICF) shifted towards shorter relaxation times with increasing radiation dose as a result of radiolysis. The characteristic decay time distribution function, G(gamma), indicates the presence of fast and slow mode peaks respectively at around 0.1-10 ms and 100-1000 ms. A peak broadening of the fast mode peak in G(gamma) appeared with decreasing temperature, indicating that coil-to-helical conformational transition took place. The conformation transition temperature (CTT) decreased with increasing radiation dose. No transition was observed for kappa-carrageenan irradiated at 200 kGy. A new faster relaxation mode appeared at around 0.1-1 ms at temperatures below the CTT. This peak is found in kappa-carrageenan irradiated at doses exclusively between 75 and 175 kGy. The peak height of this mode is largest at 100 kGy which corresponds to the optimum biologic activity of kappa-carrageenan reported previously.  相似文献   

16.
The tail domain of vinculin (V(t)) is an actin binding module containing two regions that interact with F-actin. Although intact V(t) purified from a bacterial expression system is a globular monomer, each actin binding region dimerizes when expressed individually, suggesting the presence of cryptic self-association sites whose exposure is regulated. We show that actin modulates V(t) self-association by inducing or stabilizing a conformational change in V(t) that allows dimerization. Chemical cross-linking studies implicate one of the actin binding regions in mediating dimerization in the presence of actin. Actin-induced V(t) dimers may play a role in the filament cross-linking activity of this protein. The V(t) dimers induced by actin are biochemically distinct from the V(t) dimers and higher oligomers induced by acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate, suggesting structural differences in V(t) bound to these two ligands that may provide a mechanistic basis for inhibition of F-actin binding by phosphatidylinositol 4,5-bisphosphate. The ability of actin to regulate the dimerization state of an actin binding protein suggests that, rather than serving a passive structural role, actin filaments may directly participate in signal transduction and other cellular events that are known to depend on cytoskeletal integrity.  相似文献   

17.
Phosphofructokinase (Pfk1, EC 2.7.1.11) plays a key regulatory role in the glycolytic pathway. The combination of X-ray crystallographic and biochemical data has provided an understanding of the different conformational changes that occur between the active and inhibited states of the bacterial enzyme, and of the role of the two bacterial effectors. Eukaryotic phosphofructokinases exhibit a far more sophisticated regulatory mechanism, they are more complex structures regulated by a large number of effectors (around 20). Saccharomyces cerevisiae Pfk1 is an 835 kDa hetero-octamer which shows cooperative binding for fructose-6-phosphate (F6P) and non-cooperative binding for ATP. The 3D structure of the F6P-bound state was obtained by cryo-electron microscopy to 1.1 nm resolution. This electron microscopy structure, in combination with molecular replacement using the bacterial enzyme has helped provide initial phases to solve the X-ray structure of the F6P-bound state 12S yeast truncated-tetramer. Biochemical and small-angle X-ray scattering (SAXS) studies had indicated that Pfk1 underwent a large conformational change upon Mg-ATP binding. We have calculated a reconstruction using reference-based 3D projection alignment methods from 0 degrees images acquired from frozen-hydrated preparations of the enzyme in the presence of Mg-ATP. The ATP-bound structure is more extended or open, and the calculated radius of gyration of 7.33 nm (7.0 nm for F6P) is in good agreement with the SAXS data. There is a substantial decrease in the rotational angle between the top and bottom tetramers. Interestingly, all these changes have arisen from a reorientation of the alpha- and beta-subunits in the dimers. The interface region between the alpha- and beta-subunits is now approximately half the size of the one in the F6P-bound structure. This is the first time that the 3D structure of a eukaryotic Pfk1 has been visualized in its T-state (inhibited-state).  相似文献   

18.
To clarify the nature of the aggregation of membrane proteins (MP) induced by lanthanide cations (Lns), the interaction of cerium(III) (Ce3+) and lanthanum(III)(La3+) with erythrocyte membrane proteins was studied by means of SDS-PAGE, light scattering measurement, fluorescence, CD and FTIR spectra. The results showed that Ce3+ and La3+ induce protein aggregation not only by Lns non-covalent binding and cross-linking, but also by oxidative cross-linking through disulfide bond formation. As demonstrated by intrinsic fluorescence, CD and FTIR spectra studies, the aggregation was accompanied by the conformation changes with tryptophane residues exposing to more hydrophobic environment and the decreasing alpha-helix and beta-sheet contents. By stopped-flow studies, protein aggregation was shown to be a slow change, which is initiated by rapid Lns binding and then followed by subsequent conformational changes.  相似文献   

19.
Dimer structure and liquid structure of fatty acids in the binary liquid mixture of dodecanoic (LA) and 3-phenylpropionic acids (PPA) were studied through the measurements of DSC, self-diffusion coefficient (D), density, viscosity, 13C NMR spin-lattice relaxation time, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS). The phase diagram of LA/PPA mixture exhibited a typical eutectic pattern, which means that LA and PPA are completely immiscible in solid phase. In the liquid phase of the LA/PPA mixture, D of LA always differed from that of PPA irrespective of their compositions. This exhibited that, in the liquid phase of the binary mixture of fatty acids giving a complete eutectic in the solid phase, the fatty acid dimers are composed of the same fatty acid species irrespective of their compositions. The liquid structure of the LA/PPA mixture was clarified through the SAXS and also the SANS measurements.  相似文献   

20.
A fluorescent photoreactive ATP derivative, 2'(3')-O-(4-benzoylbenzoyl)-1,N(6)-etheno-ATP (Bz(2)-epsilonATP), was synthesized and reacted with the rice kinesin K16 motor domain (K16MD). In the presence of ADP or ATP, UV irradiation of the K16MD solution containing Bz(2)-epsilonATP resulted in a new 100 kDa band, which was an intermolecular cross-linked product of motor domains. In contrast, no cross-linking was observed in the absence of nucleotides. For the motor domain of mouse brain kinesin and skeletal muscle myosin subfragment-1, no such intermolecular photo cross-linking by Bz(2)-epsilonATP was observed. Our results indicate that Bz(2)-epsilonATP acts unusually as a photoreactive crosslinker to detect conformational changes in K16MD induced by nucleotide binding resulting in the formation of dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号