首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Evidence is now accumulating that the plasma membrane is organized in different lipid and protein subdomains. Thus, glycosylphosphatidylinositol (GPI)-anchored proteins are proposed to be clustered in membrane microdomains enriched in cholesterol and sphingolipids, called rafts.By a detergent-mediated method, alkaline phosphatase, a GPI-anchored enzyme, was efficiently inserted into the membrane of sphingolipids- and cholesterol-rich liposomes as demonstrated by flotation in sucrose gradients. We have determined the enzyme extraluminal orientation. Using defined lipid components to assess the possible requirements for GPI-anchored protein insertion, we have demonstrated that insertion into membranes was cholesterol-dependent as the cholesterol addition increased the enzyme incorporation in simple phosphatidylcholine liposomes.  相似文献   

2.
In this work, we investigated the role of a glycosylphosphatidylinositol (GPI)-anchored protein, the alkaline phosphatase, on the solubilization of detergent-resistant liposomes. In vivo, GPI-anchored proteins are clustered into sphingolipid- and cholesterol-rich membrane domains and this peculiar composition provides cold-detergent-insolubility. To better understand the mechanisms involved in the clustering of these subdomain components, we built a model, namely sphingolipid- and cholesterol-rich liposomes. We show the cold-Triton X-100 resistance of liposomes before and after insertion of GPI-anchored enzyme. When the amount of incorporated enzyme varied, significant changes in membrane stability occurred. Low protein contents into liposomes increased detergent insolubility, whereas high amounts decreased it. Furthermore, significant differences in the detergent-resistance of each lipid were exhibited between liposomes and proteoliposomes. Thus, the enzyme insertion led to a dramatic decrease of cholesterol solubilization, in line with the existence of cholesterol/GPI interactions. Effect of temperature on detergent resistance was also investigated. Liposome solubilization increased with temperature up to a threshold value of 40/45 degrees C. This was also the temperature at which a phase transition of liposome membrane occurred, as evidenced by Laurdan fluorescence. Although the GPI-anchored enzyme insertion modified membrane stability, no change was observed on phase transition. Our work highlights the importance of GPI-anchored proteins in the structure of sphingolipid- and cholesterol-rich membrane domains, in the detergent-insolubility of these peculiar domains, as well as in interaction of GPI proteins with cholesterol.  相似文献   

3.
The influence of membrane lipid environment on the activity of GPI-anchored enzymes was investigated with human placental alkaline phosphatase reconstituted by a detergent-dialysis technique in liposomes composed of palmitoyloleoylphosphatidylcholine, alone or in mixture with lipids enriched along with the protein within lipid rafts: cholesterol, sphingomyelin, and GM1 ganglioside. The highest V max was recorded for a phosphatidylcholine/10% GM1 mixture (143 +/- 5 nmol of substrate hydrolyzed per minute per microgram of protein), while the lowest for a phosphatidylcholine/30% cholesterol mixture and for raft-mimicking 1:1:1 phosphatidylcholine/sphingolipid/cholesterol liposomes (M:M:M) (57 +/- 3 and 52 +/- 3, respectively). No significant differences in K m were detected. The protein segregation, assessed using the chemical cross-linker bis(sulfosuccinimidyl)suberate, increased with the protein:lipid ratio, within the 1:1200-1:4800 protein:lipid molar ratio range, but did not affect enzyme activity. The activity decreased when the order of the lipid bilayers was increased, higher for those containing cholesterol, as judged by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Finally, the GPI-enzyme activity was affected by membrane curvature. This result was suggested by a strong inverse correlation (Pearson's correlation coefficient = 0.91; p < 0.0001) between activity and liposome diameter, measured by laser light scattering and ranging between 59 +/- 6 nm for a phosphatidylcholine/10% GM1 mixture (displaying the highest activity) and 188 +/- 25 nm for a phosphatidylcholine/30% cholesterol mixture and 185 +/- 23 nm for raft-mimicking liposomes (displaying the lowest activities). The activity-membrane curvature relationship was further confirmed by comparing the activity of proteoliposomes having different sizes but identical lipid compositions. These data open the possibility that the activity of GPI-anchored enzymes may be modulated by membrane microenvironment features, in particular by membrane curvature and cholesterol-enriched ordered microenvironments, such as those of lipid rafts.  相似文献   

4.
Tissue-nonspecific alkaline phosphatase (TNAP) is associated to the plasma membrane via a GPI-anchor and plays a key role in the biomineralization process. In plasma membranes, most GPI-anchored proteins are associated with "lipid rafts", ordered microdomains enriched in sphingolipids, glycosphingolipids and cholesterol. In order to better understand the role of lipids present in rafts and their interactions with GPI-anchored proteins, the insertion of TNAP into different lipid raft models was studied using dipalmitoylphosphatidylcholine (DPPC), cholesterol (Chol), sphingomyelin (SM) and ganglioside (GM1). Thus, the membrane models studied were binary systems (9:1 molar ratio) containing DPPC:Chol, DPPC:SM and DPPC:GM1, ternary systems (8:1:1 molar ratio) containing DPPC:Chol:SM, DPPC:Chol:GM1 and DPPC:SM:GM1 and finally, a quaternary system (7:1:1:1 molar ratio) containing DPPC:Chol:SM:GM1. Calorimetry analysis of the liposomes and proteoliposomes indicate that lateral phase segregation could be noted only in the presence of cholesterol, with the formation of cholesterol-rich microdomains centered above Tc=41.5°C. The presence of GM1 and SM into DPPC-liposomes influenced mainly ΔH and Δt(1/2) values. The gradual increase in the complexity of the systems decreased the activity of the enzyme incorporated. The presence of the enzyme also fluidifies the systems, as seen by the intense reduction in ?H values, but do not alter Tc values significantly. Therefore, the study of different microdomains and its biophysical characterization may contribute to the knowledge of the interactions between the lipids present in MVs and its interactions with TNAP.  相似文献   

5.
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the C-terminal end that serves as an anchor to the plasma membrane and could be responsible for the presence of GPI proteins in rafts, a type of functionally important membrane microdomain enriched in sphingolipids and cholesterol. In order to understand better how GPI proteins partition into rafts, the insertion of the GPI-anchored alkaline phosphatase (AP) was studied in real-time using atomic force microscopy. Supported phospholipid bilayers made of a mixture of sphingomyelin–dioleoylphosphatidylcholine containing cholesterol (Chl+) or not (Chl–) were used to mimic the fluid-ordered lipid phase separation in biological membranes. Spontaneous insertion of AP through its GPI anchor was observed inside both Chl+ and Chl– lipid ordered domains, but AP insertion was markedly increased by the presence of cholesterol.  相似文献   

6.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.  相似文献   

7.
The majority of cholesterol-dependent cytolysins (CDCs) utilize cholesterol as a membrane receptor, whereas a small number are restricted to the GPI-anchored protein CD59 for initial membrane recognition. Two cholesterol-binding CDCs, perfringolysin O (PFO) and streptolysin O (SLO), were found to exhibit strikingly different binding properties to cholesterol-rich natural and synthetic membranes. The structural basis for this difference was mapped to one of the loops (L3) in the membrane binding interface that help anchor the toxin monomers to the membrane after receptor (cholesterol) binding by the membrane insertion of its amino acid side chains. A single point mutation in this loop conferred the binding properties of SLO to PFO and vice versa. Our studies strongly suggest that changing the side chain structure of this loop alters its equilibrium between membrane-inserted and uninserted states, thereby affecting the overall binding affinity and total bound toxin. Previous studies have shown that the lipid environment of cholesterol has a dramatic effect on binding and activity. Combining this data with the results of our current studies on L3 suggests that the structure of this loop has evolved in the different CDCs to preferentially direct binding to cholesterol in different lipid environments. Finally, the efficiency of β-barrel pore formation was inversely correlated with the increased binding and affinity of the PFO L3 mutant, suggesting that selection of a compatible lipid environment impacts the efficiency of membrane insertion of the β-barrel pore.  相似文献   

8.
Understanding the interactions between membrane proteins and the lipid bilayer is key to increasing our ability to predict and tailor the folding mechanism, structure and stability of membrane proteins. Here, we have investigated the effects of changing the membrane composition and the relative concentrations of protein and lipid on the folding mechanism of the bacterial outer membrane protein PagP. The folding pathway, monitored by tryptophan fluorescence, was found to be characterized by a burst phase, representing PagP adsorption to the liposome surface, followed by a time course that reflects the folding and insertion of the protein into the membrane. In 1,2-dilauroyl-sn-glycero-3-phosphocholine (diC(12:0)PC) liposomes, the post-adsorption time course fits well to a single exponential at high lipid-to-protein ratios (LPRs), but at low LPRs, a second exponential phase with a slower folding rate constant is observed. Interrupted refolding assays demonstrated that the two exponential phases reflect the presence of parallel folding pathways. Partitioning between these pathways was found to be modulated by the elastic properties of the membrane. Folding into mixed 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine:diC(12:0)PC liposomes resulted in a decrease in PagP adsorption to the liposomes and a switch to the slower folding pathway. By contrast, inclusion of 1,2-dilauroyl-sn-glycero-3-phosphoserine into diC(12:0)PC liposomes resulted in a decrease in the folding rate of the fast pathway. The results highlight the effect of lipid composition in tailoring the folding mechanism of a membrane protein, revealing that membrane proteins have access to multiple, competing folding routes to a unique native structure.  相似文献   

9.
Glycosylphosphatidylinositol-anchored proteins may be concentrated in membrane microdomains (lipid rafts) that are also enriched in cholesterol and sphingolipids. The glycosyl anchor of these proteins is a specific, high affinity receptor for the channel-forming protein aerolysin. We wished to determine if the presence of rafts promotes the activity of aerolysin. Treatment of T lymphocytes with methyl-beta-cyclodextrin, which destroys lipid rafts by sequestering cholesterol, had no measurable effect on the sensitivity of the cells to aerolysin; nor did similar treatment of erythrocytes decrease the rate at which they were lysed by the toxin. We also studied the rate of aerolysin-induced channel formation in liposomes containing glycosylphosphatidylinositol-anchored placental alkaline phosphatase, which we show is a receptor for aerolysin. In liposomes containing sphingolipids as well as glycerophospholipids and cholesterol, most of the enzyme was Triton X-100-insoluble, indicating that it was localized in rafts, whereas in liposomes prepared without sphingolipids, all of the enzyme was soluble. Aerolysin was no more active against liposomes containing rafts than against those that did not. We conclude that lipid rafts do not promote channel formation by aerolysin.  相似文献   

10.
The amyloid protein precursor (APP) was incorporated into liposomes or phospholipid monolayers. APP insertion into liposomes required neutral lipids, such as L-alpha-phosphatidylcholine, in the target membrane. It was prevented in vesicles containing L-alpha-phosphatidylserine. The insertion was enhanced in acidic solutions, suggesting that it is modulated by specific charge/charge interactions. Surface-active properties and behaviour of APP were characterized during insertion of the protein in monomolecular films of L-alpha-phosphatidylcholine, L-alpha-phosphatidylethanolamine or L-alpha-phosphatidylserine. The presence of the lipid film enhanced the rate of adsorption of the protein at the interface, and the increase in surface pressure was consistent with APP penetrating the lipid film. The adsorption of APP on the lipid monolayers displayed a significant head group dependency, suggesting that the changes in surface pressure produced by the protein were probably affected by electrostatic interactions with the lipid layers. Our results indicate that the penetration of the protein into the lipid monolayer is also influenced by the hydrophobic interactions between APP and the lipid. CD spectra showed that a large proportion of the alpha-helical secondary structure of APP remained preserved over the pH or ionic strength ranges used. Our findings suggest that APP/membrane interactions are mediated by the lipid composition and depend on both electrostatic and hydrophobic effects, and that the variations observed are not due to major secondary structural changes in APP. These observations may be related to the partitioning of APP into membrane microdomains.  相似文献   

11.
Toxicity mechanisms of Bacillus thuringiensis Cry insecticidal proteins involve membrane insertion and lytic pore formation in lipid bilayers of the target larval midgut cell membranes. The B. thuringiensis Cry4Ba mosquito-larvicidal protein has been shown to be capable of permeabilizing liposome vesicles and of forming ion channels in planar lipid bilayers. Here, the membrane interaction of the 65-kDa activated Cry4Ba protein with the lipid monolayers, comprising dipalmitoyl phosphatidylcholine, dioleoyl phosphatidylethanolamine, and cholesterol (Chol), was studied using Langmuir-Blodgett technique. The interactions of the Cry4Ba protein with the lipid monolayers were measured from the surface pressure versus area isotherms of the protein-lipid monolayers. The increase in the mean molecular area was demonstrated as an incorporation of the protein into lipid monolayers. The insertion of the Cry4Ba protein was monitored by measuring as an increase of the surface pressure at constant molecular area. For a given monolayer, the membrane insertion of the Cry4Ba reduced as the initial surface pressure increased. The Cry4Ba protein showed a strong preference of an insertion towards a Chol monolayer. In addition, the mixed monolayers of Chol showed an enhanced effect on the insertion kinetics of Cry4Ba into lipid films, suggesting its involvement in the modulation of the protein insertion. These findings provide the first evidence that the Cry4Ba protein is capable of inserting itself into lipid monolayers, depending on the packing density of the monolayers. Our results also indicate that only a limited part of the protein is likely to be involved in the insertion.  相似文献   

12.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.  相似文献   

13.
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol, and glycosylphosphatidylinositol-anchored proteins (GPI-anchored proteins), to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of GPI-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol-specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction.  相似文献   

14.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.  相似文献   

15.
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.  相似文献   

16.
Triblock copolymers of ethylene oxide (EO) and propylene oxide (PO) of EO(n/2)PO(m)EO(n/2) type (Pluronics) demonstrate a variety of biological effects that are mainly due to their interaction with cell membranes. Previously, we have shown that Pluronics can bind to artificial lipid membranes and enhance accumulation of the anti-tumor drug doxorubicin (DOX) inside the pH-gradient liposomes and transmembrane migration (flip-flop) of NBD-labeled phosphatidylethanolamine in the liposomes composed from one component-lecithin. Here, we describe the effects caused by insertion of other natural lipids in lecithin liposomes and the significance of the lipid composition for interaction of Pluronic L61 with the membrane. We used binary liposomes consisting of lecithin and one of the following lipids: cholesterol, phosphatidylethanolamine, ganglioside GM1, sphingomyelin, cardiolipin or phosphatidic acid. The influence of the additives on (1) membrane microviscosity; (2) binding of Pluronic L61; (3) the copolymer effect on lipid flip-flop and membrane permeability towards DOX was studied. The results showed that insertion of sphingomyelin and cardiolipin did not influence membrane microviscosity and effects of Pluronic on the membrane permeability. Addition of phosphatidic acid led to a decrease in microviscosity of the bilayer and provoked its destabilization by the copolymer. On the contrary, cholesterol increased microviscosity of the membrane and decreased binding of Pluronic and its capacity to enhance flip-flop and DOX accumulation. Analogous tendencies were revealed upon incorporation of egg phosphatidylethanolamine or bovine brain ganglioside GM1. Thus, a reverse dependence between the microviscosity of membranes and their sensitivity to Pluronic effects was demonstrated. The described data may be relevant to mechanisms of Pluronic L61 interaction with normal and tumor cells.  相似文献   

17.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

18.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.  相似文献   

19.
Hyaluronan synthase (HAS) is a unique membrane-associated glycosyltransferase and its activity is lipid dependent. The dependence however is not well understood, especially in vertebrate systems. Here we investigated the functional association of hyaluronan synthesis in a cholesterol-rich membrane-environment. The culture of human dermal fibroblasts in lipoprotein-depleted medium attenuated the synthesis of hyaluronan. The sequestration of cellular cholesterol by methyl-ß-cyclodextrin also decreased the hyaluronan production of fibroblasts, as well as the HAS activity. To directly evaluate the effects of cholesterol on HAS activity, a recombinant human HAS2 protein with a histidine-tag was expressed as a membrane protein by using a baculovirus system, then successfully solubilized, and isolated by affinity chromatography. When the recombinant HAS2 proteins were reconstituted into liposomes composed of both saturated phosphatidylcholine and cholesterol, this provided a higher enzyme activity as compared with the liposomes formed by phosphatidylcholine alone. Cholesterol regulates HAS2 activity in a biphasic manner, depending on the molar ratio of phosphatidylcholine to cholesterol. Furthermore, the activation profiles of different lipid compositions were determined in the presence or absence of cholesterol. Cholesterol had the opposite effect on the HAS2 activity in liposomes composed of phosphatidylethanolamine or phosphatidylserine. Taken together, the present data suggests a clear functional association between HAS activity and cholesterol-dependent alterations in the physical and chemical properties of cell membranes.  相似文献   

20.
A method is described for reconstitution of a protein into lipid vesicles using one of the natural detergents lysophosphatidylcholine or lysophosphatidic acid. The intestinal microvillus enzyme, aminopeptidase N (EC 3.4.11.2) is incorporated into lipid vesicles prepared from a total lipid extract of the microvillus membrane. The method is based on fusion of aminopeptidase-lysophospholipid micelles with liposomes prepared by sonication. The incorporation of the protein into the lipid bilayer is analyzed by gel permeation chromatography and sucrose density gradient centrifugation. The coincidence of the protein and lipid profiles is used to evaluate protein incorporation. The incorporation is visualized by electron microscopy with negative staining. The method has the advantage of using natural detergents, lysophospholipids, which are minor but natural constituents of biological membranes. The method could be of value as a tool in studies of mechanisms of insertion of newly synthesized proteins into biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号