首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.  相似文献   

2.
A systematic approach to the analysis of protein phosphorylation   总被引:29,自引:0,他引:29  
Reversible protein phosphorylation has been known for some time to control a wide range of biological functions and activities. Thus determination of the site(s) of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. However, direct determination of individual phosphorylation sites occurring on phosphoproteins in vivo has been difficult to date, typically requiring the purification to homogeneity of the phosphoprotein of interest before analysis. Thus, there has been a substantial need for a more rapid and general method for the analysis of protein phosphorylation in complex protein mixtures. Here we describe such an approach to protein phosphorylation analysis. It consists of three steps: (1) selective phosphopeptide isolation from a peptide mixture via a sequence of chemical reactions, (2) phosphopeptide analysis by automated liquid chromatography-tandem mass spectrometry (LC-MS/MS), and (3) identification of the phosphoprotein and the phosphorylated residue(s) by correlation of tandem mass spectrometric data with sequence databases. By utilizing various phosphoprotein standards and a whole yeast cell lysate, we demonstrate that the method is equally applicable to serine-, threonine- and tyrosine-phosphorylated proteins, and is capable of selectively isolating and identifying phosphopeptides present in a highly complex peptide mixture.  相似文献   

3.
LC-MS/MS has emerged as the method of choice for the identification and quantification of protein sample mixtures. For very complex samples such as complete proteomes, the most commonly used LC-MS/MS method, data-dependent acquisition (DDA) precursor selection, is of limited utility. The limited scan speed of current mass spectrometers along with the highly redundant selection of the most intense precursor ions generates a bias in the pool of identified proteins toward those of higher abundance. A directed LC-MS/MS approach that alleviates the limitations of DDA precursor ion selection by decoupling peak detection and sequencing of selected precursor ions is presented. In the first stage of the strategy, all detectable peptide ion signals are extracted from high resolution LC-MS feature maps or aligned sets of feature maps. The selected features or a subset thereof are subsequently sequenced in sequential, non-redundant directed LC-MS/MS experiments, and the MS/MS data are mapped back to the original LC-MS feature map in a fully automated manner. The strategy, implemented on an LTQ-FT MS platform, allowed the specific sequencing of 2,000 features per analysis and enabled the identification of more than 1,600 phosphorylation sites using a single reversed phase separation dimension without the need for time-consuming prefractionation steps. Compared with conventional DDA LC-MS/MS experiments, a substantially higher number of peptides could be identified from a sample, and this increase was more pronounced for low intensity precursor ions.  相似文献   

4.
Correct phosphorylation site assignment is a critical aspect of phosphoproteomic analysis. Large-scale phosphopeptide data sets that are generated through liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) analysis often contain hundreds or thousands of phosphorylation sites that require validation. To this end, we have created PhosphoScore, an open-source assignment program that is compatible with phosphopeptide data from multiple MS levels (MS(n)). The algorithm takes into account both the match quality and normalized intensity of observed spectral peaks compared to a theoretical spectrum. PhosphoScore produced >95% correct MS(2) assignments from known synthetic data, > 98% agreement with an established MS(2) assignment algorithm (Ascore), and >92% agreement with visual inspection of MS(3) and MS(4) spectra.  相似文献   

5.
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.  相似文献   

6.
A microelectrospray ionization tandem Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS(n)) approach for structural characterization of protein phosphorylation is described. Identification of proteolytic peptides is based solely upon mass measurement by high field (9.4 Tesla) FT-ICR MS. The location of the modification within any phosphopeptide is then established by FT-ICR MS(2) and MS(3) experiments. Structural information is maximized by use of electron capture dissociation (ECD) and/or infrared multiphoton dissociation (IRMPD). The analytical utility of the method is demonstrated by characterization of protein kinase A (PKA) phosphorylation. In a single FT-ICR MS experiment, 30 PKA tryptic peptides (including three phosphopeptides) were mass measured by internal calibration to within an absolute mean error of |0.7 ppm|. The location of each of the three sites of phosphorylation was then determined by MS(2) and MS(3) experiments, in which ECD and IRMPD provide complementary peptide sequence information. In two out of three cases, electron irradiation of a phosphopeptide [M + nH](n+) ion produced an abundant charge-reduced [M + nH]((n-1)+*) ion, but few sequence-specific c and z(*) fragment ions. Subsequent IRMPD (MS(3)) of the charge-reduced radical ion resulted in the detection of a large number of ECD-type ion products (c and z ions), but no b or y type ions. The utility of activated ion ECD for the characterization of tryptic phosphopeptides was then demonstrated.  相似文献   

7.
The past decade has been marked by the emergence of selective affinity media and sensitive mass spectrometry instrumentation that facilitated large-scale phosphoproteome analyses and expanded the repertoire of protein phosphorylation. Despite these remarkable advances, the precise location of the phosphorylation site still represents a sizable challenge in view of the labile nature of the phosphoester bond and the presence of neighboring phosphorylatable residues within the same peptide. This difficulty is exacerbated by the combinatorial distribution of phosphorylated residues giving rise to different phosphopeptide isomers. These peptides have similar physicochemical properties, and their separation by LC is often problematic. Few studies have described the frequency and distribution of phosphoisomers in large-scale phosphoproteomics experiments, and no convenient informatics tools currently exist to facilitate their detection. To address this analytical challenge, we developed two algorithms to detect separated and co-eluting phosphopeptide isomers and target their subsequent identification using an inclusion list in LC-MS/MS experiments. Using these algorithms, we determined that the proportion of isomers present in phosphoproteomics studies from mouse, rat, and fly cell extracts represents 3-6% of all identified phosphopeptides. While conventional analysis can identify chromatographically separated phosphopeptides, targeted LC-MS/MS analyses using inclusion lists provided complementary identification and expanded the number of phosphopeptide isomers by at least 52%. Interestingly, these analyses revealed that the occurrence of phosphopeptides isomers can also correlate with the presence of extended phosphorylatable amino acids that can act as a "phosphorylation switch" to bind complementary domains such as those present in SR proteins and ribonucleoprotein complexes.  相似文献   

8.
IMAC in combination with mass spectrometry is a promising approach for global analysis of protein phosphorylation. Nevertheless this approach suffers from two shortcomings: inadequate efficiency of IMAC and poor fragmentation of phosphopeptides in the mass spectrometer. Here we report optimization of the IMAC procedure using (32)P-labeled tryptic peptides and development of MS/MS/MS (MS3) for identifying phosphopeptide sequences and phosphorylation sites. The improved IMAC method allowed recovery of phosphorylated tryptic peptides up to approximately 77% with only minor retention of unphosphorylated peptides. MS3 led to efficient fragmentation of the peptide backbone in phosphopeptides for sequence assignment. Proteomics of mitochondrial phosphoproteins using the resulting IMAC protocol and MS3 revealed 84 phosphorylation sites in 62 proteins, most of which have not been reported before. These results revealed diverse phosphorylation pathways involved in the regulation of mitochondrial functions. Integration of the optimized batchwise IMAC protocol with MS3 offers a relatively simple and more efficient approach for proteomics of protein phosphorylation.  相似文献   

9.
Large-scale phosphoproteomic analysis employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires a significant amount of manual manipulation of phosphopeptide datasets in the post-acquisition phase. To assist in this process, we have created software, PhosphoPIC (PhosphoPeptide Identification and Compilation), which can perform a variety of useful functions including automated selection and compilation of phosphopeptide identifications from multiple MS levels, estimation of dataset false discovery rate, and application of appropriate cross-correlation (XCorr) filters. In addition, the output files generated by this program are compatible with downstream phosphorylation site assignment using the Ascore algorithm, as well as phosphopeptide quantification via QUOIL. In this report, we utilized this software to analyze phosphoproteins from short-term vasopressin-treated rat kidney inner medullary collecting duct (IMCD). A total of 925 phosphopeptides representing 173 unique proteins were identified from membrane-enriched fractions of IMCD with a false discovery rate of 1.5%. Of these proteins, 106 were found only in the membrane-enriched fraction of IMCD cells and not in whole IMCD cell lysates. These identifications included a number of well-studied ion and solute transporters including ClC-1, LAT4, MCT2, NBC3, and NHE1, all of which contained novel phosphorylation sites. Using a label-free quantification approach, we identified phosphoproteins that changed in abundance with vasopressin exposure including aquaporin-2 (AQP2), Hnrpa3, IP3 receptor 3, and pur-beta.  相似文献   

10.
11.
Recent advances in MS instrumentation and progresses in phosphopeptide enrichment, in conjunction with more powerful data analysis tools, have facilitated unbiased characterization of thousands of site‐specific phosphorylation events. Combined with stable isotope labeling by amino acids in cell culture metabolic labeling, these techniques have made it possible to quantitatively evaluate phosphorylation changes in various physiological states in stable cell lines. However, quantitative phosphoproteomics in primary cells and tissues remains a major technical challenge due to the lack of adequate techniques for accurate quantification. Here, we describe an integrated strategy allowing for large scale quantitative profiling of phosphopeptides in complex biological mixtures. In this technique, the mixture of proteolytic peptides was subjected to phosphopeptide enrichment using a titania affinity column, and the purified phosphopeptides were subsequently labeled with iTRAQ reagents. After further fractionation by strong‐cation exchange, the peptides were analyzed by LC‐MS/MS on an Orbitrap mass spectrometer, which collects CID and high‐energy collisional dissociation (HCD) spectra sequentially for peptide identification and quantitation. We demonstrate that direct phosphopeptide enrichment of protein digests by titania affinity chromatography substantially improves the efficiency and reproducibility of phosphopeptide proteomic analysis and is compatible with downstream iTRAQ labeling. Conditions were optimized for HCD normalized collision energy to balance the overall peptide identification and quantitation using the relative abundances of iTRAQ reporter ions. Using this approach, we were able to identify 3557 distinct phosphopeptides from HeLa cell lysates, of which 2709 were also quantified from HCD scans.  相似文献   

12.
Shi WQ  Cai H  Xu DD  Su XY  Lei P  Zhao YF  Li YM 《Regulatory peptides》2007,144(1-3):1-5
Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tyrosine and tryptophan residues are especially susceptible to attack by reactive nitrogen species. On the other hand, protein tyrosine phosphorylation has gained much attention in respect to cellular regulatory events and signal transduction. Peroxynitrite-mediated nitration of peptide YPPPPPW and phosphopeptide pYPPPPPW were studied at pH 7.4. The predominant nitrated products were separated and identified by reverse phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS). The nitration sites were established by tandem electrospray ionization-mass spectrometry (LC-MS/MS). A regulatory effect of tyrosine phosphorylation/dephosphorylation on peptide nitration was observed. YPPPPPW was predominantly nitrated at tyrosine residue while pYPPPPPW was nitrated at tryptophan one. Our results can help in understanding the biochemical significance of the relationship of tyrosine phosphorylation and nitration in proteins.  相似文献   

13.
Phosphorylation of plasma membrane proteins frequently initiates signal transduction pathways or attenuate plasma membrane transport processes. Because of the low abundance and hydrophobic features of many plasma membrane proteins and the low stoichiometry of protein phosphorylation, studies of the plasma membrane phosphoproteome are challenging. We present an optimized analytical strategy for plasma membrane phosphoproteomics that combines efficient plasma membrane protein preparation with TiO(2)-based phosphopeptide enrichment and high-performance mass spectrometry for phosphopeptide sequencing. We used sucrose centrifugation in combination with sodium carbonate extraction to achieve efficient and reproducible purification of low microgram levels of plasma membrane proteins from human mesenchymal stem cells (hMSCs, 10(7) cells), achieving more than 70% yield of membrane proteins. Phosphopeptide enrichment by titanium dioxide chromatography followed by capillary liquid chromatography-tandem mass spectrometry allowed us to assign 703 unique phosphorylation sites in 376 phosphoproteins. Our experiments revealed that treatment of cell cultures with three different types of protein phosphatase inhibitors produces distinct phosphopeptide populations and an increase of 10-40% of the number of detected and sequenced phosphoserine, phosphothreonine and phosphotyrosine containing peptides. In summary, our analytical strategy enables functional phosphoproteomic analysis of stem cell differentiation and cell surface biomarker discovery using very low amounts of starting material.  相似文献   

14.
Manual checking is commonly employed to validate the phosphopeptide identifications from database searching of tandem mass spectra. It is very time-consuming and labor intensive as the number of phosphopeptide identifications increases greatly. In this study, a simple automatic validation approach was developed for phosphopeptide identification by combining consecutive stage mass spectrometry data and the target-decoy database searching strategy. Only phosphopeptides identified from both MS2 and its corresponding MS3 were accepted for further filtering, which greatly improved the reliability in phosphopeptide identification. Before database searching, the spectra were validated for charge state and neutral loss peak intensity, and then the invalid MS2/MS3 spectra were removed, which greatly reduced the database searching time. It was found that the sensitivity was significantly improved in MS2/MS3 strategy as the number of identified phosphopeptides was 2.5 times that obtained by the conventional filter-based MS2 approach. Because of the use of the target-decoy database, the false-discovery rate (FDR) of the identified phosphopeptides could be easily determined, and it was demonstrated that the determined FDR can precisely reflect the actual FDR without any manual validation stage.  相似文献   

15.
The reversible phosphorylation of proteins plays a major role in many vital cellular processes by modulating protein function and transmitting signals within cellular pathways and networks. Because phosphorylation is dynamic and the sites of modification cannot be predicted by an organism's genome, proteomic measurements are required to identify sites of and changes in the phosphorylation state of proteins. The low stoichiometry of phosphorylation sites that accompany the multifarious nature of protein phosphorylation in biological systems continues to challenge the dynamic range of present mass spectrometry (MS) technologies and proteomic measurements, despite the preponderance of research and analytical methods devoted to this area. This review addresses some of the strategies and limitations involving the use of MS to map and quantify changes in protein phosphorylation sites for samples that range from a single protein to an entire proteome, and presents several compelling reasons as to why comprehensive phosphorylation site analysis has proven to be so elusive without a hypothesis-driven experimental approach to elicit more meaningful and confident results.  相似文献   

16.
We developed a probability-based machine-learning program, Colander, to identify tandem mass spectra that are highly likely to represent phosphopeptides prior to database search. We identified statistically significant diagnostic features of phosphopeptide tandem mass spectra based on ion trap CID MS/MS experiments. Statistics for the features are calculated from 376 validated phosphopeptide spectra and 376 nonphosphopeptide spectra. A probability-based support vector machine (SVM) program, Colander, was then trained on five selected features. Data sets were assembled both from LC/LC-MS/MS analyses of large-scale phosphopeptide enrichments from proteolyzed cells, tissues and synthetic phosphopeptides. These data sets were used to evaluate the capability of Colander to select pS/pT-containing phosphopeptide tandem mass spectra. When applied to unknown tandem mass spectra, Colander can routinely remove 80% of tandem mass spectra while retaining 95% of phosphopeptide tandem mass spectra. The program significantly reduced computational time spent on database search by 60-90%. Furthermore, prefiltering tandem mass spectra representing phosphopeptides can increase the number of phosphopeptide identifications under a predefined false positive rate.  相似文献   

17.
Protein kinases constitute a large superfamily of enzymes with key regulatory functions in nearly all signal transmission processes of eukaryotic cells. However, due to their relatively low abundance compared with the vast majority of cellular proteins, currently available proteomics techniques do not permit the comprehensive biochemical characterization of protein kinases. To address these limitations, we have developed a prefractionation strategy that uses a combination of immobilized low molecular weight inhibitors for the selective affinity capture of protein kinases. This approach resulted in the direct purification of cell type-specific sets of expressed protein kinases, and more than 140 different members of this enzyme family could be detected by LC-MS/MS. Furthermore the enrichment technique combined with phosphopeptide fractionation led to the identification of more than 200 different phosphorylation sites on protein kinases, which often remain occluded in global phosphoproteome analysis. As the phosphorylation states of protein kinases can provide a readout for the signaling activities within a cellular system, kinase-selective phosphoproteomics based on the procedures described here has the potential to become an important tool in signal transduction analysis.  相似文献   

18.
Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.  相似文献   

19.
Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.  相似文献   

20.
Protein phosphorylation, one of the most important protein post-translational modifications, is involved in various biological processes, and the identification of phosphorylation peptides (phosphopeptides) and their corresponding phosphorylation sites (phosphosites) will facilitate the understanding of the molecular mechanism and function of phosphorylation. Mass spectrometry (MS) provides a high-throughput technology that enables the identification of large numbers of phosphosites. PhoPepMass is designed to assist human phosphopeptide identification from MS data based on a specific database of phophopeptide masses and a multivariate hypergeometric matching algorithm. It contains 244,915 phosphosites from several public sources. Moreover, the accurate masses of peptides and fragments with phosphosites were calculated. It is the first database that provides a systematic resource for the query of phosphosites on peptides and their corresponding masses. This allows researchers to search certain proteins of which phosphosites have been reported, to browse detailed phosphopeptide and fragment information, to match masses from MS analyses with defined threshold to the corresponding phosphopeptide, and to compare proprietary phosphopeptide discovery results with results from previous studies. Additionally, a database search software is created and a “two-stage search strategy” is suggested to identify phosphopeptides from tandem mass spectra of proteomics data. We expect PhoPepMass to be a useful tool and a source of reference for proteomics researchers. PhoPepMass is available at https://www.scbit.org/phopepmass/index.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号