首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flooded rice fields, which are an important source of the atmospheric methane, have become a model system for the study of interactions between various microbial processes. We used a combination of stable carbon isotope measurements and application of specific inhibitors in order to investigate the importance of various methanogenic pathways and of CH4 oxidation for controlling CH4 emission. The fraction of CH4 produced from acetate and H2/CO2 was calculated from the isotopic signatures of acetate, carbon dioxide (CO2) and methane (CH4) measured in porewater, gas bubbles, in the aerenchyma of the plants and/or in incubation experiments. The calculated ratio between both pathways reflected well the ratio determined by application of methyl fluoride (CH3F) as specific inhibitor of acetate‐dependent methanogenesis. Only at the end of the season, the theoretical ratio of acetate: H2 = 2 : 1 was reached, whereas at the beginning H2/CO2‐dependent methanogenesis dominated. The isotope discrimination was different between rooted surface soil and unrooted deep soil. Root‐associated CH4 production was mainly driven by H2/CO2. Porewater CH4 was found to be a poor proxy for produced CH4. The fraction of CH4 oxidised was calculated from the isotopic signature of CH4 produced in vitro compared to CH4 emitted in situ, corrected for the fractionation during the passage from the aerenchyma to the atmosphere. Isotope mass balances and in situ inhibition experiments with difluoromethane (CH2F2) as specific inhibitor of methanotrophic bacteria agreed that CH4 oxidation was quantitatively important at the beginning of the season, but decreased later. The seasonal pattern was consistent with the change of potential CH4 oxidation rates measured in vitro. At the end of the season, isotope techniques detected an increase of oxidation activity that was too small to be measured with the flux‐based inhibitor technique. If porewater CH4 was used as a proxy of produced CH4, neither magnitude nor seasonal pattern of in situ CH4 oxidation could be reproduced. An oxidation signal was also found in the isotopic signature of CH4 from gas bubbles that were released by natural ebullition. In contrast, bubbles stirred up from the bulk soil had preserved the isotopic signature of the originally produced CH4.  相似文献   

2.
Methane (CH4) is a particularly potent greenhouse gas with a radiative forcing 23 times that of CO2 on a per mass basis. Flooded rice paddies are a major source of CH4 emissions to the Earth's atmosphere. A free‐air CO2 enrichment (FACE) experiment was conducted to evaluate changes in crop productivity and the crop ecosystem under enriched CO2 conditions during three rice growth seasons from 1998 to 2000 in a rice paddy at Shizukuishi, Iwate, Japan. To understand the influence of elevated atmospheric CO2 concentrations on CH4 emission, we measured methane flux from FACE rice fields and rice fields with ambient levels of CO2 during the 1999 and 2000 growing seasons. Methane production and oxidation potentials of soil samples collected when the rice was at the tillering and flowering stages in 2000 were measured in the laboratory by the anaerobic incubation and alternative propylene substrates methods, respectively. The average tiller number and root dry biomass were clearly larger in the plots with elevated CO2 during all rice growth stages. No difference in methane oxidation potential between FACE and ambient treatments was found, but the methane production potential of soils during the flowering stage was significantly greater under FACE than under ambient conditions. When free‐air CO2 was enriched to 550 ppmv, the CH4 emissions from the rice paddy field increased significantly, by 38% in 1999 and 51% in 2000. The increased CH4 emissions were attributed to accelerated CH4 production potential as a result of more root exudates and root autolysis products and to increased plant‐mediated CH4 emissions because of the larger rice tiller numbers under FACE conditions.  相似文献   

3.
The emission of the greenhouse gas CH4 from ricepaddies is strongly influenced by management practicessuch as the input of ammonium-based fertilisers. Weassessed the impact of different levels (200 and 400kgN.ha–1) of urea and (NH4)2HPO4on the microbial processes involved in production andconsumption of CH4 in rice field soil. We usedcompartmented microcosms which received fertilisertwice weekly. Potential CH4 production rates weresubstantially higher in the rice rhizosphere than inunrooted soil, but were not affected by fertilisation.However, CH4 emission was reduced by the additionof fertiliser and was negatively correlated with porewater NH 4 plus concentration, probably as theconsequence of elevated CH4 oxidation due tofertilisation. CH4 oxidation as well as numbersof methanotrophs was distinctly stimulated by theaddition of fertiliser and by the presence of the riceplant. Without fertiliser addition,nitrogen-limitation of the methanotrophs will restrictthe consumption of CH4. This may have a majorimpact on the global CH4 budget, asnitrogen-limiting conditions will be the normalsituation in the rice rhizosphere. Elevated potentialnitrifying activities and numbers were only detectedin microcosms fertilised with urea. However, asubstantial part of the nitrification potential in therhizosphere of rice was attributed to the activity ofmethanotrophs, as was demonstrated using theinhibitors CH3F and C2H2.  相似文献   

4.
The exchange of CH4 between tropical forests and the atmosphere was determined by simultaneously measuring the net CH4 flux at the soil surface and assessing the flux contribution from soil-feeding termite biomass, both within the soil profile and in mounds. In Cameroon the flux of CH4 ranged from a net emission of 40.7 ng m–2 s–1 to a net CH4 oxidation of –53.0 ng m–2 s–1. Soil-inhabiting termite biomass was significantly correlated with CH4 flux. Termite mounds emitted up to 2000 ng s–1 mound–1. Termite-derived CH4 emission reduced the soil sink strength by up to 28%. Disturbance also had a strong effect on the soil sink strength, with the average rate of CH4 oxidation, at – 17.5 ng m–2 s–1, being significantly smaller (≈ 36%) at the secondary forest site than the –27.2 ng m–2 s–1, observed at the primary forest site. CH4 budgets calculated for each site indicated that both forests were net sinks for CH4 at – 6.1 kg ha–1 y–1 in the near-primary forest and – 3.1 kg ha–1 y–1 in the secondary forest. In Borneo, three forest sites representing a disturbance gradient were examined. CH4 oxidation rates ranged from 0 to – 32.1 ng m–2s–1 and a significant correlation between the net flux and termite biomass was observed only in an undisturbed primary forest, although the biomass was insufficient to cause net emission of CH4. Rates of CH4 oxidation were not significantly different across the disturbance gradient but were, however, larger in the primary forest (averaging – 15.4 ng m–2 s–1) than in an old-growth secondary forest (–13.9 ng m–2s–1) and a young secondary re-growth (– 10.8 ng m–2s–1). CH4 flux from termite mounds ranged from net oxidation in an abandoned mound to a maximum emission of 468 ng s–1 mound–1. CH4 budgets calculated for each site indicated that CH4 flux from termite mounds had an insignificant effect on the budget of CH4 at the regional scale at all three forest sites. Annual oxidation rates were – 4.8, – 4.2 and – 3.4 kg ha–1 y–1 in the primary, secondary and young secondary forests, respectively.  相似文献   

5.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

6.
Aim Savannas and seasonally‐dry ecosystems cover a significant part of the world's land surface. If undisturbed, these ecosystems might be expected to show a net uptake of methane (CH4) and a limited emission of nitrous oxide (N2O). Land management has the potential to change dramatically the characteristics and gas exchange of ecosystems. The present work investigates the contribution of warm climate seasonally‐dry ecosystems to the atmospheric concentration of nitrous oxide and methane, and analyses the impact of land‐use change on N2O and CH4 fluxes from the ecosystems in question. Location Flux data reviewed here were collected from the literature; they come from savannas and seasonally‐dry ecosystems in warm climatic regions, including South America, India, Australasia and Mediterranean areas. Methods Data on gas fluxes were collected from the literature. Two factors were considered as determinants of the variation in gas fluxes: land management and season. Land management was grouped into: (1) control, (2) ‘burned only’ and (3) managed ecosystems. The season was categorized as dry or wet. In order to avoid the possibility that the influence of soil properties on gas fluxes might confound any differences caused by land management, sites were grouped in homogeneous clusters on the basis of soil properties, using multivariate analyses. Inter‐ and intra‐cluster analysis of gas fluxes were performed, taking into account the effects of season, land management and main vegetation types. Results Soils were often acid and nutrient‐poor, with low water retention. N2O emissions were generally very low (median flux 0.32 mg N2O m?2 day?1), and no significant differences were observed between woodland savannas and managed savannas. The highest fluxes (up to 12.9 mg N2O m?2 day?1) were those on relatively fertile soils with high air‐filled porosity and water retention. The effect of season on N2O production was evident only when sites were separated in homogeneous groups on the basis of soil properties. CH4 fluxes varied over a wide range (?22.9 to 3.15 mg CH4 m?2 day?1, where the negative sign denotes removal of gas from the atmosphere), with an annual average daily flux of ?0.48 ± 0.96 (SD) mg CH4 m?2 day?1 in undisturbed (control) sites. Land‐use change dramatically reduced this CH4 sink. Managed sites were weak sinks of CH4 in the dry season and became sources of CH4 in the wet season. This was particularly evident for pastures. Burning alone did not reduce soil net CH4 oxidation, but decreased N2O production. Main conclusions Despite the low potential for N2O production, both in natural and managed conditions, tropical seasonally‐dry ecosystems represent a significant source of N2O (4.4 Tg N2O year?1) on a global scale, as a consequence of the large area they occupy. The same environments represent a potential CH4 sink of 5.17 Tg CH4 year?1. However, assuming that c. 30% of the tropical land is converted to different uses, the sink would be reduced to 3.2 Tg CH4 year?1. The limited information on fluxes from Mediterranean ecosystems does not allow a meaningful scaling up.  相似文献   

7.
In order to elucidate the effects of rice plants on CH4 production, we conducted experiments with soil slurries and planted rice microcosms. Methane production in anoxic paddy soil slurries was stimulated by the addition of rice straw, of unsterile or autoclaved rice roots, and of the culture fluid in which rice plants had axenically been cultivated. The addition of these compounds also increased the concentrations of acetate and H2, precursors of CH4 production, in the soil. Planted compared to unplanted paddy soil microcosms exhibited lower porewater CH4 concentrations but higher CH4 emission rates. They also exhibited higher sulfate concentrations but similar nitrate concentrations. Concentrations of acetate, lactate and H2 were not much different between planted and unplanted microcosms. Pulse labeling of rice plants with14CO2 resulted during the next 5 days in transient accumulation of radioactive lactate, propionate and acetate, and after the second day of incubation in the emission of14CH4. Most of the radioactivity (40–70%) was incorporated into the above-ground biomass of rice plants. However, during a total incubation of 16 days about 3–6% of the applied radioactivity was emitted as14CH4, demonstrating that plant-derived carbon was metabolized and significantly contributed to CH4 production. The sequence of the appearance of radioactive products and their specific radioactivities indicate that CH4 was produced from root exudates by a microbial community consisting of fermenting and methanogenic bacteria.  相似文献   

8.
The biosphere–atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997–1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447‐m WLEF‐TV tower as part of the Chequamegon Ecosystem–Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June–August (24±14.4 mg m?2 day?1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m?2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m?2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long‐term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4.  相似文献   

9.
Natural wetlands release about 20% of global emissions of CH4, an effective greenhouse gas contributing to the total radiative forcing. Thus, changes in the carbon cycle in wetlands could have significant impacts on climate. The effect of raised supply of CO2 or NH4NO3 on the annual CH4 efflux from the lawn of a boreal oligotrophic mire was investigated over two years. Ten study plots were enclosed with mini‐FACE rings, five vented with CO2‐enriched air and the other five with ambient air. In addition, five plots were sprayed with NH4NO3 so that the cumulative addition of N was 3 g m?2 y?1; and five plots were controls. The CO2 enrichment (target concentration 560 ppmv) increased CH4 efflux about 30–40%, but half of this increase seemed to be caused by the air‐blowing system. The increasing atmospheric concentration of CO2 would promote CH4 release in boreal mires, but the increase in CH4 efflux would be clearly smaller than that reported in studies made in temperate or subtropical temperature conditions. Addition of N enhanced the annual release of CH4 only slightly. At least over the short‐term, the increase in N deposition would have little effect on CH4 effluxes. The increase in CH4 release would probably increase radiative forcing and thus accelerate climate change. However, CH4 effluxes are only a small part in the whole matter balance in mires and thus further studies are needed to define the net effects of raised supply of CO2 or N for carbon accumulation, trace gas fluxes and radiative forcing.  相似文献   

10.
Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed‐chamber technique from August to November 2003 and from August 2006 to July 2007 on tree‐covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high‐resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha−1 yr−1) than for soils with permafrost (0.37 kg CH4 ha−1 yr−1). In well‐drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha−1 yr−1). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha−1 yr−1). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha−1 yr−1. Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.  相似文献   

11.
Jia  Zhongjun  Cai  Zucong  Xu  Hua  Li  Xiaoping 《Plant and Soil》2001,230(2):211-221
To understand the integrated effects of rice plants (variety Wuyugeng 2) on CH4 emission during the typical rice growth stage, the production, oxidation and emission of methane related to rice plants were investigated simultaneously through laboratory and greenhouse experiments. CH4 emission was significantly higher from the rice planted treatment than from the unplanted treatment. In the rice planted treatment, CH4 emission was higher at tillering stage than at panicle initiation stage. An average of 36.3% and 54.7% of CH4 produced was oxidized in the rhizosphere at rice tillering stage and panicle initiation stage, respectively, measured by using methyl fluoride (MF) technique. In the meantime, CH4 production in the planted treatments incubated under O2-free N2 condition was reduced by 44.9 and 22.3%, respectively, compared to unplanted treatment. On the contrary, the presence of rice plants strongly stimulated CH4 production by approximately 72.3% at rice ripening stage. CH4 emission through rice plants averaged 95% at the tillering stage and 89% at the panicle initiation stage. Based on these results, conclusions are drawn that higher CH4 emission from the planted treatment than from unplanted treatment could be attributed to the function of rice plants for transporting CH4 from belowground to the atmosphere at tillering and panicle initiation stage, and that a higher CH4 emission at tillering stage than at panicle initiation stage is due to the lower rhizospheric CH4 oxidation and more effective transport mediated by rice plants.  相似文献   

12.
In rice microcosms (Oryza sativa, var. Roma, type japonica),CH4 emission, CH4 production, CH4oxidation and CH4 accumulation were measured over an entirevegetation period. Diffusive CH4 emission was measured inclosed chambers, CH4 production was measured in soil samples,CH4 oxidation was determined from the difference between oxicand anoxic emissions, and CH4 accumulation was measured byanalysis of porewater and gas bubbles. The sum of diffusiveCH4 emission, CH4 oxidation, andCH4 accumulation was only 60% of the cumulativeCH4 production. The two values diverged during the first 50days (vegetative phase) and then again during the last 50 days (latereproductive phase and senescence) of the 150 day vegetation period. Duringthe period of day 50–100 (early reproductive phase/flowering), theprocesses were balanced. Most likely, gas bubbles and diffusion limitationare responsible for the divergence in the early and late phases. The effectof rice on CH4 production rates and CH4concentrations was studied by measuring these processes also in unplantedmicrocosms. Presence of rice plants lowered the CH4concentrations, but had no net effect on the CH4 productionrates.  相似文献   

13.
Lake littoral zones have a transitional nature and dynamic conditions, which are reflected in their CH4 emissions. Thus, detailed studies are needed to assess the littoral CH4 emissions in a regional scale. In this study, CH4 fluxes were followed during the ice‐free seasons in 1998 and 1999 by using the static chamber method in the littoral zone of two lakes in Finland. An exceptionally high water level in 1998 caused an unusually long inundation in otherwise ephemerally flooded zone. The flooding was normal in year 1999. The factors controlling CH4 emissions were examined and statistical response functions were constructed. Further, the effect of extended flooding on the littoral CH4 budged was estimated. The methane flux was primarily regulated by the water level in grass and sedge dominated eulittoral zone, but not in infralittoral reed and water lily stands. Methane emissions in the sedge dominated zone decreased significantly, when the flood was high enough to submerge the venting structures of the plants. Besides water level, sediment temperature determined CH4 emission. The cumulative CH4 emissions from the whole littoral wetlands in wet year were 1.1 times (L. Kevätön), or 0.61 and 0.79 times (L. Mekrijärvi) those in dry year. The crucial factor was the discrepancy between the exceptional and the average water level. The extension of inundated area does not necessarily increase CH4 emissions if the flood reaches infrequently inundated areas, which apparently have low CH4 production potential. This is the case especially, if the emissions in lower zones simultaneously decrease due to high water level. Our study analyses these complex responses between CH4 emissions and water level.  相似文献   

14.
Processes involved in formation and emission of methane in rice paddies   总被引:40,自引:9,他引:31  
The seasonal change of the rates of production and emission of methane were determined under in-situ conditions in an Italian rice paddy in 1985 and 1986. The contribution to total emission of CH4 of plant-mediated transport, ebullition, and diffusion through the flooding water was quantified by cutting the plants and by trapping emerging gas bubbles with funnels. Both production and emission of CH4 increased during the season and reached a maximum in August. However, the numbers of methanogenic bacteria did not change. As the rice plants grew and the contribution of plant-mediated CH4 emission increased, the percentage of the produced CH4 which was reoxidized and thus, was not emitted, also increased. At its maximum, about 300 ml CH4 were produced per m2 per hour. However, only about 6% were emitted and this was by about 96% via plant-mediated transport. Radiotracer experiments showed that CH, was produced from H2/CO2. (30–50%) and from acetate. The pool concentration of acetate was in the range of 6–10 mM. The turnover time of acetate was 12–16 h. Part of the acetate pool appeared to be not available for production of CH4 or CO2  相似文献   

15.
Using the free‐air CO2 enrichment (FACE) techniques, we carried out a 3‐year mono‐factorial experiment in temperate paddy rice fields of Japan (1998–2000) and a 3‐year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001–2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol?1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen‐poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen‐rich paddy rice ecosystems.  相似文献   

16.
控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响   总被引:3,自引:0,他引:3  
周文鳞  娄运生 《生态学报》2014,34(16):4555-4560
采用温室盆栽和静态箱-气相色谱法,研究了控释氮肥对抗除草剂转基因水稻和亲本常规水稻稻田土壤甲烷(CH4)排放的影响。供试土壤为潴育型水稻土,氮肥种类为尿素和控释氮肥。结果表明,与对照(尿素)相比,控释氮肥提高了水稻分蘖数、株高、生物量及产量。水稻品种对CH4季节性排放规律没有明显影响,CH4排放通量基本表现为,自水稻移栽后逐渐升高,移栽后62—92 d出现峰值,而后逐渐降低至水稻收获。与对照相比,控释氮肥可显著降低CH4排放通量和全生育期累积排放量。抗除草剂转基因水稻稻田土壤CH4排放通量和累积排放量均显著低于亲本常规水稻。研究认为,一次性基施控释氮肥和种植抗除草剂转基因水稻对有效减缓稻田甲烷排放具有重要意义。  相似文献   

17.
Membrane inlet mass spectrometry was used to monitor dissolved gas concentrations (CO2, CH4 and O2) in a mesotrophic peat core from Kopparås, Sweden. 1 A comparison of depth profiles (down to 22 cm) with an ombrotrophic peat core (Ellergower, SW Scotland) investigated previously, revealed major differences in gas concentrations. Thus methane reached concentrations more than twice as high (800 μM) at depths greater than 12 cm in the Kopparås core. As shown previously, the primary determinant of the depth of the oxic zone is the level of the water table. Whereas in the Scottish cores, mass spectrometric detectability of O2 was confined to the first 3 cm below this level, in the Swedish core penetration of O2 was greater (7 cm). CO2 profiles were similar in cores from both locations. 2 A thick layer of Sphagnum mosses dominated the plant cover of the Swedish peat core. A poorly developed deep root system, as distinct from that of the vascular plant cover in Scottish cores, diminished gas exchange rates, and presumably aerobic methane oxidation at depth around roots. These characteristics may contribute to the development of discontinuities in gas profiles at depths greater 15 cm as upward gas transport is established predominantly by diffusion and/or ebullition in the Swedish core. 3 Monitoring gas concentrations at the peat surface and at 2 cm depth after changing water tables showed a delayed response of approximately 4 days as a result of the high water content and moisture‐regulating capacity of mosses. 4 Recovery processes at 2 cm depth after raising the water table revealed final production rates of dissolved CO2 and CH4 in the peat pore water between 0.8 and 4.4 μmol h?1 L?1 and between 0.1 and 1.7 μmol h?1 L?1, respectively. Higher production rates were found during the day, indicating a diurnal rhythm due to plant photosynthetic activity even at the low values of photosynthetically active radiation (PAR: 110 μmol s?1 m?2) used in the experimental set‐up. 5 In the water‐logged mesotrophic Kopparås core changes of dissolved gas concentrations (DGC) at 3 and 14 cm depth were surface temperature‐dependent rather than light dependent. This suggests that changes of air temperature alters the covering vegetation to increase the conductivity for dissolved gases through vascular plants and to facilitate gas transport by diffusion and/or ebullition.  相似文献   

18.
We have studied the inhibiting effect offertilisation and soil compaction on CH4oxidation by measuring gas fluxes and soil mineral Ndynamics in the field, and CH4 oxidation rates inlaboratory-incubated soil samples. The fertilisationand soil compaction field experiment was establishedin 1985, and the gas fluxes were measured from 1992 to1994. Methane oxidation was consistently lower infertilised than in unfertilised soil, but thereapparently was no effect of repeated fertiliseradditions on the fertilised plots. The measuredmineral N in fertilised and unfertilised soil showedlarge differences in NH4 + concentrationsjust after fertilisation, but the levels rapidlyconverged because of plant uptake and nitrification.The CH4 oxidation rate did not reflect thesecontrasting mineral N patterns, suggesting that theCH4 oxidation capacity remaining in the soil thathad been fertilised since 1985 was largely insensitiveto ammonia in the new fertiliser. Thus, competitiveinhibition by ammonia may have been involved in theearly stage of the field fertiliser experiment, butthe CH4 oxidation remaining after 7 to 9 years ofcontinued fertilisation seems not to have beenaffected by ammonia. The substrate affinity of theCH4-oxidizing microflora appeared to be the samein both the fertilised soil and the unfertilisedcontrol, as judged from the response to elevatedCH4 concentrations (52 µl l–1) inlaboratory incubations. Soil compaction resulted in apersistent reduction of CH4 influx, also seen inlaboratory incubations with sieved (4-mm mesh) soilsamples. Since the sieving presumably removesdiffusion barriers created by the soil compaction, thefact that compaction effects persisted through thesieving may indicate that soil compaction has affectedthe biological potential for CH4 oxidation in thesoil.  相似文献   

19.
Effects of vegetation on the emission of methane from submerged paddy soil   总被引:19,自引:0,他引:19  
Summary Methane emission rates from rice-vegetated paddy fields followed a seasonal pattern different to that of weed-covered or unvegetated fields. Presence of rice plants stimulated the emission of CH4 both in the laboratory and in the field. In unvegetated paddy fields CH4 was emitted almost exclusively by ebullition. By contrast, in rice-vegetated fields more than 90% of the CH4 emission was due to plant-mediated transport. Rice plants stimulated methanogenesis in the submerged soil, but also enhanced the CH4 oxidation rates within the rhizosphere so that only 23% of the produced CH4 was emitted. Gas bubbles in vegetated paddy soils contained lower CH4 mixing ratios than in unvegetated fiels. Weed plants were also efficient in mediating gas exchnage between submerged soil and atmosphere, but did not stimulate methanogenesis. Weed plants caused a relatively high redox potential in the submerged soil so that 95% of the produced CH4 was oxidized and did not reach the atmosphere. The emission of CH4 was stimulated, however, when the cultures were incubated under gas atmospheres containing acetylene or consisting of O2-free nitrogen.  相似文献   

20.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号