首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

2.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

3.
Field studies to examine the influence of woody debris on rainbow trout (Oncorhynchus mykiss) abundance through habitat modification were conducted in two small streams, the Horonai and Uenae streams, running through secondary deciduous forest in south-western Hokkaido, northern Japan. Reach-based woody debris volume (total woody debris volume per 100 m2 of study reach) was significantly correlated with the total basal area of riparian stands along the margins of the Horonai stream, but no significant relationship was evident between them for the Uenae stream. This inconsistency between the streams was considered to be a result of the difference in stream size (width, depth and discharge). Woody debris was the principal agent for pool formation, although it had a far smaller volume than that found in streams draining old-growth coniferous forest in North America, where most of the previous studies have been carried out. Untransported debris pieces of larger volume more effectively contributed to pool formation than smaller transported pieces. The volume of individual debris scour pools was positively correlated with the volume of woody debris associated with each. Similarly, reach-based pool volume increased with total woody debris volume, but the relationship was less clear in the Uenae stream, having more abundant transported woody debris than the Horonai stream. The biomass of rainbow trout in individual pools, which were regarded as the most preferred habitat type for stream salmonids, was correlated with pool volume. A positive relationship also existed between reach-based standing crop and pool volume. These results revealed that secondary deciduous forest, like old-growth coniferous forest, plays an important role in enhancing the carrying capacity for rainbow trout by supplying woody debris which promoted preferred habitat formation.  相似文献   

4.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

5.
1. The quality of allochthonous organic matter influences the transfer of energy and nutrients through recipient food webs. We investigated the effects of variation in the composition of riparian forests (deciduous, mixed, coniferous) on the elemental imbalance between basal resources and consumers in streams, on consumer feeding and on potential feedbacks to riparian systems via emergent aquatic insects. 2. We tested for differences in elemental stoichiometry (carbon/nitrogen/phosphorus; C/N/P) and stable isotopes (?13C and ?15N) between deciduous (red alder, Alnus rubra) and coniferous litter (western hemlock, Tsuga heterophylla) and among abundant stream invertebrates from streams draining different riparian forests (deciduous, mixed, coniferous). We then assessed shredder feeding preferences (of the trichopteran, Lepidostoma unicolor) for litter incubated in streams with these different forest types and quantified differences in emergence of aquatic and semiaquatic insects among streams. 3. Both initial (non‐incubated) and stream‐incubated A. rubra litter had lower C/N and C/P and were more depleted in ?13C and more enriched in ?15N, than T. heterophylla litter. The stoichiometry of invertebrate tissue did not vary significantly among taxa or with riparian forest composition. A predator (the plecopteran Chloroperlidae) and a collector‐gatherer (the ephemeropteran Paraleptophlebia gregalis) from mixed and coniferous forest streams were more enriched in ?13C and ?15N isotopes than those from deciduous streams, suggesting that low availability of palatable, N‐rich A. rubra litter may constrain energy flow and nutrient fluxes up through the food web in systems with little or no A. rubra. 4. Consumption of A. rubra litter by L. unicolor was most rapid when the litter had been incubated in streams draining deciduous forests, whereas consumption of T. heterophylla litter was not influenced by the composition of the riparian forest. 5. Peak insect emergence from coniferous forest streams occurred 1 month earlier and at 2–3× higher density than from mixed and deciduous‐forest streams, but total biomass of emerging insects throughout the study period was not different between forest types. Assemblages of emerging insects were different between deciduous and coniferous forest streams, and taxon richness and diversity were nearly 2× greater from deciduous than from coniferous forest streams. 6. Forest composition influences stream invertebrate feeding and could have reciprocal feedbacks onto riparian systems via altered insect emergence.  相似文献   

6.
To examine the effects of selective timber extraction on fish communities in Sabah, Malaysia, quantitative samples of fishes were taken from thirteen streams running through undisturbed rainforest or through forest that had been selectively logged 3–18 years previously. Multivariate analysis (canonical discriminant analysis and cluster analysis) indicated that mesohabitats within streams (riffles and pools) and differences in stream size were more important in determining community structure than logging history. Riffles in streams running through logged or undisturbed forest were indistinguishable using relative biomass or abundance data, as were pools from small streams (approximate order 2). Fish communities from pools in larger streams showed some separation in multivariate space corresponding to a complex set of relative changes in abundance and/or biomass between species. However it was difficult to unambiguously assign such changes to logging regime alone. There appeared to be some differences in fish communities between streams in recently-logged (3–7 years) and old-logged (17–18 years) areas related to abundance or biomass of three cyprinids (Garra borneensis, Lobocheilos bo and Osteochilus chini). Only one species, Pangio mariarum, was not found in streams in logged forest, but it was only found at one location in undisturbed forest. A number of other species showed significant differences in abundance or biomass between sites but most of these were only present at some sites and in low abundance. Principal components analysis of habitat data showed that riffle sites were homogeneous whatever their logging history as were pools in unlogged large streams. Pools in logged large streams were significantly more heterogeneous but in a random rather than systematic manner. It is concluded that the type of selective logging practices used locally have low impact on fish communities through mechanisms of persistence and/or rapid recolonisation.  相似文献   

7.
1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher, and invertebrate biomass and production were two times higher in the disturbed stream.
2. Comparison of invertebrate community abundance 1, 5 and 16 years after clear-cutting indicated that the proportion of scrapers had decreased, whereas shredders had increased. Functional group percentage similarity indicated that the invertebrate community in the disturbed stream 16 years after clear-cutting was more similar to the reference than to that found earlier in the disturbed stream.
3. The five indices calculated from data collected over the past 16 years, as well as the abundance, biomass and production data collected during this study, proved to be of differing value in assessing recovery of the disturbed stream from logging. Percent dominant taxon and EPT (Ephemeroptera, Plecoptera and Trichoptera) taxon richness failed to show any initial differences between reference and disturbed streams, indicating that these indices may not be useful for measuring recovery from logging. The percentage Baetis and shredder–scraper indices showed significant differences only during the 1977 study and suggest recovery (no difference between reference and disturbed) by 1982. The North Carolina Biotic Index showed continued differences during 1982 in the riffle and depositional habitats and recovery by 1993. Total macroinvertebrate abundance, biomass and production, as well as EPT abundance, indicated continued differences between the reference and disturbed streams in the 1993 study.  相似文献   

8.
1. Recent increases in fire frequency in North America have focused interest on potential effects on adjacent ecosystems, including streams. Headwaters could be particularly affected because of their high connectivity to riparian and downstream aquatic ecosystems through aquatic invertebrate drift and emergence. 2. Headwater streams from replicated burned and control catchments were sampled in 2 years following an intense forest fire in northeastern Washington (U.S.A.). We compared differences in benthic, drift and emergent macroinvertebrate density, biomass and community composition between five burned and five unburned catchments (14–135 ha). 3. There were significantly higher macroinvertebrate densities in burned than control sites for all sample types. Macroinvertebrate biomass was greater at burned sites only from emergence samples; in benthic and drift samples there was no significant difference between burn and control sites. 4. For all sample types, diversity was lower in the burned catchments, and the macroinvertebrate community was dominated by chironomid midges. 5. Compared to the effects of fire in less disturbed ecosystems, this study illustrated that forest fire in a managed forest may have greater effects on headwater macroinvertebrate communities, influencing prey flow to adjacent terrestrial and downstream aquatic habitats for at least the first 2 years post‐fire.  相似文献   

9.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

10.
Detecting the magnitude of human-induced disturbance events, such as forest harvest, on biological communities is often confounded by other environmental gradients and scales at which these effects are examined. In this study, benthic invertebrates were collected from 43 streams across four basins and two geographic regions to (1) determine whether invertebrate abundance and community structure are best explained by historic forest harvest, landscape variables or a combination of both, and (2) evaluate associations among harvest, landscape variables, in-stream physical habitat, and invertebrates. Nonmetric multidimensional scaling showed that invertebrate community structure was primarily explained by watershed area and elevation, and basin and region but not by measures of forest harvest. Model selection using an information-theoretic approach and Akaike’s information criterion indicated that watershed area was the most important variable explaining clinger and long-lived taxa richness, while basin was the most important variable explaining total abundance, and total, Ephemeroptera, Plecoptera, and Trichoptera taxa richness. Forest harvest ranked lower than landscape variables in relative importance in all models. These results suggest that landscape characteristics were relatively more important in predicting invertebrate community structure than forest harvest, and should therefore be considered when assessing the impacts of both reach and watershed scale forest harvest on benthic communities. Perhaps, the levels of forest harvest examined in this study had only marginal effects on benthic invertebrates because these ecosystems are naturally resilient as a result of frequent disturbance from forest fires.  相似文献   

11.
  • 1 The effects of a forest disturbance were investigated by comparing production of leaf-shredding aquatic insects in three streams draining a mature hardwood forest and three streams draining an 11-year-old, cable-logged clearcut.
  • 2 Reference streams contained significantly greater mean annual standing crop of leaf material and significantly more slow-processing leaf material than disturbed streams. Disturbed streams had a significantly higher mean annual standing crop of fast-processing leaf material than the reference streams.
  • 3 Leaf-shredding cranefly (Tipula abdominalis), caddisfly (Pycnopsyche gentilis), and stonefly (Tallaperla maria) larvae comprised over 95% of shredder biomass in all streams. Total shredder production was significantly greater (P<0.05) in disturbed versus reference streams, but individual production rates were not significantly different between stream types.
  • 4 Pycnopsyche gentilis larvae were present at higher densities and achieved significantly greater annual biomass in disturbed versus references streams, Biomass of P. gentilis was significantly correlated with the standing crop of fast-processing, early successional leaf material in samples, whereas biomass of other shredders was correlated significantly with medium or slow-processing leaf species characteristic of later stages of forest succession.
  相似文献   

12.
We compared benthic invertebrate assemblages among headwater streams in several forest types in Japan. Forests were divided into three clusters based on vegetation composition: old-growth broad-leaved forest, planted coniferous forest, and mixed forest. The numbers of individuals and families and the diversity (Shannon-Wiener) of benthic invertebrate assemblages did not differ significantly among the three forest clusters. However, principal components analysis of family abundance showed differences in the benthic invertebrate assemblages among the three forest clusters. No environmental factors were correlated with these differences. Benthic invertebrate assemblages differed depending on forest composition. The abundances of Taeniopterygidae and Athericidae in old-growth broad-leaved forest were significantly greater than in planted coniferous forest. The abundances of Heptageniidae, Baetiidae, Stenopsychidae, Uenoidae, Chironomidae, and Potamidae in planted coniferous forest were significantly greater than in old-growth broad-leaved forest. If the remaining old-growth broad-leaved forest were to be converted to coniferous plantation, species that inhabit old-growth forest may become extinct.  相似文献   

13.
Lawesson  Jonas E. 《Plant Ecology》2000,151(2):199-221
In this study, the first comprehensive multivariate statistical analysis of Danish native forest vegetation, based on 1768 sample plots, is presented. Data were composed of data from literature sources and newly collected data. A series of cluster analyses resulted in 24 forest community types, grouped in beech (Fagus sylvatica), oak (Quercus robur-Q. petraea), hornbeam (Carpinus betulus), alder-ash (Alnus-Fraxinus) and lime (Tilia cordata, T. platyphyllos) types, in addition to mixed forest communities with several co-dominant tree species. The described communities are provisionally arranged syntaxonomically, when possible, according to the international phytosociological system. The distribution of ecological indicator values of pH, soil moisture and nitrogen is gradual in relation to the perceived plant communities. Many forest types, such as beech and oak dominated types, obtain indicated values for pH that span most of the indicated gradient. It is suggested that natural Danish forests probably would be composed of a multitude of canopy forming tree species. The present stands with one or a few tree species forming the canopy is the result of long anthropogenic influence and selective logging.  相似文献   

14.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

15.
1. Logging can strongly affect stream macroinvertebrate communities, but the direction and magnitude of these effects and their implications for trout abundance are frequently region‐specific and difficult to predict. 2. In first‐order streams in northern New England (U.S.A.) representing a chronosequence of logging history (<2 to >80 years since logging), we measured riparian forest conditions, stream macroinvertebrate community characteristics and brook trout (Salvelinus fontinalis) abundance. Principal component analysis was used to collapse forest data into two independent variables representing variation in logging history, riparian forest structure and canopy cover. We used these data to test whether logging history and associated forest conditions were significant predictors of macroinvertebrate abundance and functional feeding group composition, and whether brook trout abundance was related to logging‐associated variation in invertebrate communities. 3. Catchments with high PC1 scores (recently logged, high‐density stands with low mean tree diameter) and low PC2 scores (low canopy cover) had significantly higher total macroinvertebrate abundance, particularly with respect to chironomid larvae (low PC2 scores) and invertebrates in the grazer functional feeding group (high PC1 scores). In contrast, proportional representation of macroinvertebrates in the shredder functional feeding group increased with time since logging and canopy cover (high PC2 scores). Brook trout density and biomass was significantly greater in young, recently logged stands (high PC1 scores) and was positively related to overall macroinvertebrate abundance. In addition, three variables – trout density, invertebrate abundance and shredder abundance – successfully discriminated between streams that were less‐impacted versus more‐impacted by forestry. 4. These results indicate that timber harvest in northern New England headwater streams may shift shredder‐dominated macroinvertebrate communities supporting low trout abundance to a grazer/chironomid‐dominated macroinvertebrate community supporting higher trout abundance. However, while local effects on brook trout abundance may be positive, these benefits may be outweighed by negative effects of brook trout on co‐occurring species, as well as impairment of habitat quality downstream. Research testing the generality of these patterns will improve understanding of how aquatic ecosystems respond to anthropogenic and natural trajectories of forest change.  相似文献   

16.
The influence of predatory fish on the structure of stream food webs may be altered by the presence of forest canopy cover, and consequent differences in allochthonous inputs and primary production. Eight sites containing introduced brown trout (Salmo trutta) and eight sites that did not were sampled in the Cass region, South Island, New Zealand. For each predator category, half the sites were located in southern beech (Nothofagus) forest patches (range of canopy cover, 65–90%) and the other half were in tussock grassland. Food resources used by two dominant herbivores-detritivores were assessed using stable isotopes. 13C/12C ratios were obtained for coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), algal dominated biofilm from rocks, and larvae of Deleatidium (Ephemeroptera) and Olinga (Trichoptera). Total abundance and biomass of macroinvertebrates did not differ between streams with and without trout, but were significantly higher at grassland sites than forested sites. However, taxon richness and species composition differed substantially between trout and no-trout sites, irrespective of whether streams were located in forest or not. Trout streams typically contained more taxa, had low biomass of predatory invertebrates and large shredders, but a high proportion of consumers with cases or shells. The standing stock of CPOM was higher at forested sites, but there was less FPOM and more algae at sites with trout, regardless of the presence or absence of forest cover. The stable carbon isotope range for biofilm on rocks was broad and encompassed the narrow CPOM and FPOM ranges. At trout sites, carbon isotope ratios of Deleatidium, the most abundant invertebrate primary consumer, were closely related to biofilm values, but no relationship was found at no-trout sites where algal biomass was much lower. These results support a role for both bottom-up and top-down processes in controlling the structure of the stream communities studied, but indicate that predatory fish and forest cover had largely independent effects.  相似文献   

17.
Increased light reaching streams as a result of riparian vegetation management is often thought to be responsible for enhanced algal productivity. However, concomitant changes in nutrients and other physical processes confound that interpretation. We manipulated light in two separate experiments to test the role of light as a controlling factor for periphyton productivity and biomass, and to observe invertebrate responses in small streams in central British Columbia, Canada. We did this by adding artificial light to reaches of three forested streams, and in a second experiment we used shadecloth to cover reaches of two streams flowing through clearcuts. Periphyton growth, productivity and composition, and macroinvertebrate benthic densities were contrasted with control reaches within the same streams. Gross primary production (GPP) was increased at least 31% by light addition to forested streams. Periphyton biomass was higher under light additions, but only significantly so in one of the streams. In one stream grazers increased along with the periphyton response, whilst in the other two lit streams invertebrates, including grazers, decreased with increased light. The shading significantly reduced GPP to about 11% of that in clearcut sections, but failed to produce any significant responses in either periphyton standing stock or invertebrates in the clearcut streams. Measures of algal production and biomass responded as predicted; however, invertebrate responses to increased and decreased light were idiosyncratic amongst streams, perhaps indicating lagged responses and limitation by other resources.  相似文献   

18.
Sonali Saha 《Ecography》2003,26(1):80-86
The regressive succession model hypothesizes tropical savanna-woodlands to be a degraded stage of primary deciduous forests. Species diversity, richness and evenness of woody species in savanna-woodlands, secondary deciduous forests and mature deciduous forests of central India were compared to test if the regressive succession explained pattern in species richness, diversity, functional diversity and basal area. At the plot scale (0.1 ha) secondary deciduous forests and savanna-woodlands had similar species diversity, a pattern not consistent with the regressive model of deciduous forest succession, and mature deciduous forests had greater species diversity and richness (p<0.05). When examined at a larger scale or community scale by pooling all plots within a community type, the trend in diversity persisted even with greater effort allocated to sampling of secondary deciduous forests. Species richness at the community scale was greatest in secondary deciduous forest as expected from species area relationship. The communities shared 28 woody species but the species composition was significantly different between the communities. I suggest that conservation of tropical deciduous forests based on regressive succession model is problematic.  相似文献   

19.
Summary Data on mammalian, avian and invertebrate biomass in mixed broadleaf-podocarp forest of the Orongorongo Valley are summarised and compared with the biomass in other forests. Animal biomass totalled at least 504 kg/ha — more than twice that in several tropical forests but less than that reported from temperate deciduous forests of Europe. Earthworms (333 kg/ha) provided most animal biomass: arthropods at least 145 kg/ha, mammals (all introduced) 25 kg/ha, and birds 0.6 kg/ha. By world standards the biomass of mammals, and litter-dwelling and underground arthropods, is high and that of birds moderate. Introduced mammals have greatly altered the distribution of biomass in this forest, herbivores and predatory mammals gaining biomass at the expense of some native aboveground invertebrates and birds, several of which have been lost to this community.  相似文献   

20.
The mixture of other broadleaf species into beech forests in Central Europe leads to an increase of tree species diversity, which may alter soil biochemical processes. This study was aimed at 1) assessing differences in gross rates of soil N cycling among deciduous stands of different beech (Fagus sylvatica L.) abundance in a limestone area, 2) analyzing the relationships between gross rates of soil N cycling and forest stand N cycling, and 3) quantifying N2O emission and determining its relationship with gross rates of soil N cycling. We used 15N pool dilution techniques for soil N transformation measurement and chamber method for N2O flux measurement. Gross rates of mineral N production in the 0–5 cm mineral soil increased across stands of decreasing beech abundance and increasing soil clay content. These rates were correlated with microbial biomass which, in turn, was influenced by substrate quantity, quality and soil fertility. Leaf litter-N, C:N ratio and base saturation in the mineral soil increased with decreasing beech abundance. Soil mineral N production and assimilation by microbes were tightly coupled, resulting in low N2O emissions. Annual N2O emissions were largely contributed by the freeze-thaw event emissions, which were correlated with the amount of soil microbial biomass. Our results suggest that soil N availability may increase through the mixture of broadleaf species into beech forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号