首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Atrial natriuretic peptide (ANP) controls lipolysis in human adipocytes. Lipid mobilization is increased during repeated bouts of exercise, but the underlying mechanisms involved in this process have not yet been delineated. The relative involvement of catecholamine- and ANP-dependent pathways in the control of lipid mobilization during repeated bouts of exercise was thus investigated in subcutaneous adipose tissue (SCAT) by microdialysis. The study was performed in healthy males. Subjects performed two 45-min exercise bouts (E1 and E2) at 50% of their maximal oxygen uptake separated by a 60-min rest period. Extracellular glycerol concentration (EGC), reflecting SCAT lipolysis, was measured in a control probe perfused with Ringer solution and in two other probes perfused with either Ringer plus phentolamine (alpha(1/2)-AR antagonist) or Ringer plus both phentolamine and propranolol (beta-AR antagonist). Plasma epinephrine, plasma glycerol, and EGC were 1.7-, 1.6-, and 1.2-fold higher in E2 than in E1, respectively. Phentolamine potentiated exercise-induced EGC increase during E2 only. Propranolol reduced the lipolytic rate during both E1 and E2 compared with the probe with phentolamine. Plasma ANP concentration increased more during E2 than during E1 and was correlated with the increase in EGC in the probe containing phentolamine plus propranolol. The results suggest that ANP is involved in the control of lipolysis during exercise and that it contributes to stimulation of lipolysis during repeated bouts of exercise.  相似文献   

2.
With the use of the microdialysis method, exercise-induced lipolysis was investigated in subcutaneous adipose tissue (SCAT) in obese subjects and compared with lean ones, and the effect of blockade of alpha(2)-adrenergic receptors (ARs) on lipolysis during exercise was explored. Changes in extracellular glycerol concentrations and blood flow were measured in SCAT in a control microdialysis probe at rest and during 60-min exercise bouts (50% of heart rate reserve) and in a probe supplemented with the alpha(2)-AR antagonist phentolamine. At rest and during exercise, plasma norepinephrine and epinephrine concentrations were not different in obese compared with lean men. In the basal state, plasma and extracellular glycerol concentrations were higher, whereas blood flow was lower in SCAT of obese subjects. During exercise, the increase of plasma glycerol was higher in obese subjects (115 +/- 35 vs. 65 +/- 21 micromol/l). Oppositely, the exercise-induced increase in extracellular glycerol concentrations in SCAT was five- to sixfold lower in obese than in lean subjects (50 +/- 14 vs. 318 +/- 53 micromol/l). The exercise-induced increase in extracellular glycerol concentration was not significantly modified by phentolamine infusion in lean subjects but was strongly enhanced in the obese subjects and reached the concentrations found in lean sujects (297 +/- 46 micromol/l). These findings demonstrate that the physiological stimulation of SCAT adipocyte alpha(2)-ARs during exercice-induced sympathetic nervous system activation contributes to the blunted lipolysis noted in obese men.  相似文献   

3.
Objective: Our objective was to compare the effect of different exercise intensities on lipid oxidation in overweight men and women. Research Methods and Procedures: Nine young, healthy, overweight men and women were studied (age, 31.4 ± 2.3 and 26.7 ± 2.1 years; BMI, 27.9 ± 0.4 and 27.2 ± 0.5; for men and women, respectively). On one study day, the subjects first performed 30 minutes of cycling exercise at 30% of their maximal oxygen uptake (Vo 2max; E1 session), followed by 30 minutes of exercise at 50% Vo 2max (E2 session). On a second study day, a similar E1 session was followed by 30 minutes of exercise at 70% Vo 2max (E3 session). From the gas exchange measurements, the respiratory exchange ratio (RER) and the fat oxidation rate (FOR) were calculated. Plasma concentrations of glycerol and non‐esterified fatty acids (NEFAs) were assayed. Results: RER was significantly lower for women during only the E1 session. For both sexes, RER decreased over time during the E2 and E3 sessions. During the E1 session, the FOR per kilogram of lean mass (LM) was higher among women, and it did not change over time despite an increase in plasma NEFAs. FOR per kilogram of LM was higher during the E2 exercise for both sexes. During E2 and E3 sessions, as the exercise time was prolonged, the FOR/kg LM increased simultaneously with the increase in the plasma glycerol. Discussion: Lipid oxidation during exercise is optimized for moderate and lengthy exercise. The enhancement of lipid oxidation occurring over time during moderate‐ and high‐intensity exercises could be, in part, linked to the improvement of lipid mobilization. This fact is discussed to shed light on exercise modalities as a tool for the management of overweight.  相似文献   

4.
The aim of this study was to investigate the involvement of the antilipolytic alpha(2)-adrenergic receptor pathway in the regulation of lipolysis during exercise in subcutaneous abdominal adipose tissue (SCAAT). Seven trained men and 15 untrained men were studied. With the use of microdialysis, the extracellular glycerol concentration was measured in SCAAT at rest and during 60 min of exercise at 50% of maximal oxygen consumption. One microdialysis probe was perfused with Ringer solution; the other was supplemented with phentolamine (alpha(2)-adrenergic receptor antagonist). No differences in baseline extracellular or plasma glycerol concentrations were found between the two groups. The exercise-induced extracellular and plasma glycerol increase was higher in trained compared with untrained subjects (P < 0.05). Addition of phentolamine to the perfusate enhanced the exercise-induced response of extracellular glycerol in untrained subjects but not in trained subjects. The exercise-induced increase in plasma norepinephrine and epinephrine concentrations and the decrease in plasma insulin were not different in the two groups. These in vivo findings demonstrate higher exercise-induced lipolysis in trained compared with untrained subjects and show that, in trained subjects, the alpha(2)-mediated antilipolytic action is not involved in the regulation of lipolysis in SCAAT during exercise.  相似文献   

5.
Objective: To investigate the impact of 30‐minute walking exercise at 70% Vo 2max on tissue plasminogen activator (t‐PA) Ag and plasminogen activator inhibitor type 1 (PAI‐1) Ag in obese sedentary males. Research Methods and Procedures: A controlled observational study of the effect of a 30‐minute acute exercise bout at 70% Vo 2max on plasma t‐PA antigen and PAI‐1 antigen in 10 obese sedentary males matched for age, ethnic origin, and smoking status with 10 nonobese sedentary male controls. Results: The obese group remained hypofibrinolytic compared with the nonobese group at all time‐points before, during, and after exercise. t‐PA increased in both groups with exercise before returning to baseline values 30 minutes after exercise. PAI‐1 did not significantly change in either group with exercise but rose significantly 30 minutes after exercise in the obese group. Discussion: The reduction in fibrinolytic potential in the obese group represents an increase in acute thrombotic risk and could account for the increased incidence of exercise‐associated myocardial infarction observed in sedentary obese groups.  相似文献   

6.
The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70 % of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70 % of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg?1 body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p?=?0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p?=?0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p?<?0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r 2?=?0.33, p?=?0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects.  相似文献   

7.
The aim of this study was to investigate the evolution of the adrenergic and insulin-mediated regulation of lipolysis during different phases of a 6-mo dietary intervention. Eight obese women underwent a 6-mo dietary intervention consisting of a 1-mo very low-calorie diet (VLCD) followed by a 2-mo low-calorie diet (LCD) and 3-mo weight maintenance (WM) diet. At each phase of the dietary intervention, microdialysis of subcutaneous adipose tissue (SCAT) was performed at rest and during a 3-h hyperinsulinemic euglycemic clamp. Responses of dialysate glycerol concentration (DGC) were determined at baseline and during local perfusions with adrenaline or adrenaline and phentolamine before and during the last 30 min of the clamp. Dietary intervention induced a body weight reduction and an improved insulin sensitivity. DGC progressively decreased during the clamp, and this decrease was similar during the different phases of the diet. The adrenaline-induced increase in DGC was higher at VLCD and LCD compared with baseline condition and returned to prediet levels at WM. In the probe with adrenaline and phentolamine, the increase in DGC was higher than that in the adrenaline probe at baseline and WM, but it was not different at VLCD and LCD. The results suggest that the responsiveness of SCAT to adrenaline-stimulated lipolysis increases during the calorie-restricted phases due to a reduction of the α(2)-adrenoceptor-mediated antilipolytic action of adrenaline. At WM, adrenaline-stimulated lipolysis returned to the prediet levels. Furthermore, no direct relationship between insulin sensitivity and the diet-induced changes in the regulation of lipolysis was found.  相似文献   

8.
Aerobic exercise increases whole body adipose tissue lipolysis, but is lipolysis higher in subcutaneous adipose tissue (SCAT) adjacent to contracting muscles than in SCAT adjacent to resting muscles? Ten healthy, overnight-fasted males performed one-legged knee extension exercise at 25% of maximal workload (W(max)) for 30 min followed by exercise at 55% W(max) for 120 min with the other leg and finally exercised at 85% W(max) for 30 min with the first leg. Subjects rested for 30 min between exercise periods. Femoral SCAT blood flow was estimated from washout of (133)Xe, and lipolysis was calculated from femoral SCAT interstitial and arterial glycerol concentrations and blood flow. In general, blood flow and lipolysis were higher in femoral SCAT adjacent to contracting than adjacent to resting muscle (time 15-30 min; blood flow: 25% W(max) 6.6 +/- 1.0 vs. 3.9 +/- 0.8 ml x 100 g(-1) x min(-1), P < 0.05; 55% W(max) 7.3 +/- 0.6 vs. 5.0 +/- 0.6 ml x 100 g(-1) x min(-1), P < 0.05; 85% W(max) 6.6 +/- 1.3 vs. 5.9 +/- 0.7 ml x 100 g(-1) x min(-1), P > 0.05; lipolysis: 25% W(max) 102 +/- 19 vs. 55 +/- 14 nmol x 100 g(-1) x min(-1), P = 0.06; 55% W(max) 86 +/- 11 vs. 50 +/- 20 nmol x 100 g(-1) x min(-1), P > 0.05; 85% W(max) 88 +/- 31 vs. -9 +/- 25 nmol x 100 g(-1) x min(-1), P < 0.05). In conclusion, blood flow and lipolysis are generally higher in SCAT adjacent to contracting than adjacent to resting muscle irrespective of exercise intensity. Thus specific exercises can induce "spot lipolysis" in adipose tissue.  相似文献   

9.
Head-down bed rest (HDBR) increases plasma levels of atrial natriuretic peptide (ANP) and decreases norepinephrine levels. We previously demonstrated that ANP promotes lipid mobilization and utilization, an effect independent of sympathetic nervous system activation, when infused into lean healthy men at pharmacological doses. The purpose of the present study was to demonstrate that a physiological increase in ANP contributes to lipid mobilization and oxidation in healthy young men. Eight men were positioned for 4 h in a sitting (control) or in a HDBR position. Indexes of lipid mobilization and hormonal changes were measured in plasma. Extracellular glycerol, an index of lipolysis, was determined in subcutaneous adipose tissue (SCAT) with a microdialysis technique. A twofold increase in plasma ANP concentration was observed after 60 min of HDBR, and a plateau was maintained thereafter. Plasma norepinephrine decreased by 30-40% during HDBR, while plasma insulin and glucose levels did not change. The level of plasma nonesterified fatty acids was higher during HDBR. SCAT lipolysis, as reflected by interstitial glycerol, as well as interstitial cGMP, the second messenger of the ANP pathway, increased during HDBR. This was associated with an increase in blood flow observed throughout HDBR. Significant changes in respiratory exchange ratio and percent use of lipid and carbohydrate were seen only after 3 h of HDBR. Thus the proportion of lipid oxidized increased by 40% after 3 h of HDBR. The rise in plasma ANP during HDBR was associated with increased lipolysis in SCAT and whole body lipid oxidation. In this physiological setting, independent of increasing catecholamines, our study suggests that ANP contributes to lipid mobilization and oxidation in healthy young men.  相似文献   

10.
This experiment investigated the effects of intensity of exercise on excess postexercise oxygen consumption (EPOC) in eight trained men and eight women. Three exercise intensities were employed 40%, 50%, and 70% of the predetermined maximal oxygen consumption (VO2max). All ventilation measured was undertaken with a standard, calibrated, open circuit spirometry system. No differences in the 40%, 50% and 70% VO2max trials were observed among resting levels of oxygen consumption (V02) for either the men or the women. The men had significantly higher resting VO2 values being 0.31 (SEM 0.01) 1·min–1 than did the women, 0.26 (SEM 0.01) 1·min–1 (P < 0.05). The results indicated that there were highly significant EPOC for both the men and the women during the 3-h postexercise period when compared with resting levels and that these were dependent upon the exercise intensity employed. The duration of EPOC differed between the men and the women but increased with exercise intensity: for the men 40% – 31.2 min; 50% – 42.1 min; and 70% – 47.6 min and for the women, 40% – 26.9 min; 50% – 35.6 min; and 70% – 39.1 min. The highest EPOC, in terms of both time and energy utilised was at 70% VO2max. The regression equation for the men, where y=O2 in litres, and x=exercise intensity as a percentage of maximum was y=0.380x + 1.9 (r 2=0.968) and for the women is y=0.374x–0.857 (r 2=0.825). These findings would indicate that the men and the women had to exercise at the same percentage of their VO2max to achieve the maximal benefits in terms of energy expenditure and hence body mass loss. However, it was shown that a significant EPOC can be achieved at moderate to low exercise intensities but without the same body mass loss and energy expenditure.  相似文献   

11.
Objective: The aim of this study was to determine whether intravenous (IV) conjugated estrogens (EST) acutely enhance the suppression of whole‐body or regional subcutaneous adipose tissue (SAT) lipolysis by insulin in postmenopausal women. Research Methods and Procedures: We assessed whole‐body lipolysis by [2H5]glycerol rate of appearance (GlycRA) and abdominal and femoral SAT lipolysis (interstitial glycerol; GlycIS) by subcutaneous microdialysis. Postmenopausal women (n = 12) were studied on two occasions, with IV EST or saline control (CON), under basal conditions and during a 3‐stage (4, 8, and 40 mU/m2/min) hyperinsulinemic, euglycemic clamp. Ethanol outflow/inflow ratio and recovery of [13C]glycerol during microdialysis were used to assess blood flow changes and interstitial glycerol concentrations, respectively. Results: Compared with CON, EST did not affect systemic basal or insulin‐mediated suppression of lipolysis (GlycRA) or SAT nutritive blood flow. Basal GlycIS in SAT was reduced on the EST day. However, insulin‐mediated suppression of lipolysis in SAT was not significantly influenced by EST. Discussion: These findings suggest that estrogens acutely reduce basal lipolysis in SAT through an unknown mechanism but do not alter whole‐body or SAT suppression of lipolysis by insulin.  相似文献   

12.
The effects of exercise on energy substrate metabolism persist into the postexercise recovery period. We sought to derive bicarbonate retention factors (k) to correct for carbon tracer oxidized, but retained from pulmonary excretion before, during, and after exercise. Ten men and nine women received a primed-continuous infusion of [(13)C]bicarbonate (sodium salt) under three different conditions: 1) before, during, and 3 h after 90 min of exercise at 45% peak oxygen consumption (Vo(2peak)); 2) before, during, and 3 h after 60 min of exercise at 65% Vo(2peak); and 3) during a time-matched resting control trial, with breath samples collected for determination of (13)CO(2) excretion rates. Throughout the resting control trial, k was stable and averaged 0.83 in men and women. During exercise, average k in men was 0.93 at 45% Vo(2peak) and 0.94 at 65% Vo(2peak), and in women k was 0.91 at 45% Vo(2peak) and 0.92 at 65% Vo(2peak), with no significant differences between intensities or sexes. After exercise at 45% Vo(2peak), k returned rapidly to control values in men and women, but following exercise at 65% Vo(2peak), k was significantly less than control at 30 and 60 min postexercise in men (0.74 and 0.72, respectively, P < 0.05) and women (0.75 and 0.76, respectively, P < 0.05) with no significant postexercise differences between men and women. We conclude that bicarbonate/CO(2) retention is transiently increased in men and women for the first hour of postexercise recovery following endurance exercise bouts of hard but not moderate intensity.  相似文献   

13.
Involvement of sympathetic nervous system and natriuretic peptides in the control of exercise-induced lipid mobilization was compared in overweight and lean men. Lipid mobilization was determined using local microdialysis during exercise. Subjects performed 35-min exercise bouts at 60% of their maximal oxygen consumption under placebo or after oral tertatolol [a beta-adrenergic receptor (AR) antagonist]. Under placebo, exercise increased dialysate glycerol concentration (DGC) in both groups. Phentolamine (alpha-AR antagonist) potentiated exercise-induced lipolysis in overweight but not in lean subjects; the alpha(2)-antilipolytic effect was only functional in overweight men. After tertatolol administration, the DGC increased similarly during exercise no matter which was used probe in both groups. Compared with the control probe under placebo, lipolysis was reduced in lean but not in overweight men treated with the beta-AR blocker. Tertatolol reduced plasma nonesterified fatty acids and insulin concentration in both groups at rest. Under placebo or tertatolol, the exercise-induced changes in plasma nonesterified fatty acids, glycerol, and insulin concentrations were similar in both groups. Exercise promoted a higher increase in catecholamine and ANP plasma levels after tertatolol administration. In conclusion, the major finding of our study is that in overweight men, in addition to an increased alpha(2)-antilipolytic effect, the lipid mobilization in subcutaneous adipose tissue that persists during exercise under beta-blockade is not dependent on catecholamine action. On the basis of correlation findings, it seems to be related to a concomitant exercise-induced rise in plasma ANP when exercise is performed under tertatolol intake and a decrease in plasma insulin.  相似文献   

14.
Objectives: The aim of this study was to test the hypotheses: (1) there is a negative correlation between protein and lipid oxidative damage following maximal-intensity exercise, and oxygen uptake and work intensity (%VO2max) at the respiratory compensation point (RCP) in women and men; (2) nitro-oxidative stress following maximal-intensity exercise results from the intensification of anaerobic processes and muscle fibre micro-damage.

Methods: Study participants comprised 20 women (21.34±1.57 years) and 20 men (21.97±1.41 years) who performed a treadmill incremental test (IT); VO2max: 45.08?±?0.91 and 57.38?±?1.22?mL?kg?1?min?1 for women and men, respectively. The oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine (3-NT) concentration and creatine kinase (CK) as well as lactate dehydrogenase (LDH) activity were measured in the blood serum, and total antioxidative capacity (TAC) and lactate concentration (Lac) were determined in blood plasma before and after IT.

Results: After the IT, increases in ox-LDL, 3-NT, CK, and LDH were seen in both groups (P?P?P?Conclusions: The gain of ox-LDL and 3-NT following maximal-intensity exercise is independent of VO2max, oxygen consumption and exercise intensity at RCP. This increase of ox-LDL and 3-NT is indicative of similar lipid and protein damage in women and men. A significant increase in TAC in women following maximal-intensity exercise is the result of muscle fibre micro-injuries.  相似文献   

15.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

16.
Objective: To assess the short-term consequences of carbohydrate or fat overfeeding or of food restriction on the metabolic effects of mental stress in healthy lean women. Research Methods and Procedures: The effects of a sympathetic activation elicited by mental stress were evaluated in a group of healthy women after standardized isocaloric feeding (ISO) or after a 3-day overfeeding with 40% excess calories as either carbohydrate overfeeding (CHO OF) or fat overfeeding (FAT OF). Oxygen consumption rate (VO 2) was measured as an index of energy expenditure, and subcutaneous glycerol concentrations were monitored with microdialysis. The same measurements were performed in another group of healthy women after ISO and after a 3-day period of underfeeding with a protein sparing modified fast (UF). Results: In all conditions, mental stress significantly increased heart rate, blood pressure, plasma norepinephrine and epinephrine concentrations, and VO 2, and produced a nonsignificant increase in subcutaneous glycerol concentrations. CHO OF and FAT OF did not alter the effects of mental stress on VO 2 and subcutaneous glycerol concentrations. In contrast, UF increased basal VO 2 but significantly reduced its stimulation by mental stress. UF also enhanced the increase in subcutaneous glycerol concentrations during mental stress. Discussion: UF reduces the stimulation of energy expenditure and enhances lipolysis during sympathetic activation. These adaptations may be involved in mobilization of endogenous fat while limiting weight loss. In contrast, short-term overfeeding fails to alter the sympathetic control of energy expenditure and lipolysis.  相似文献   

17.
Objective: The aim of this study was to determine how training modifies metabolic responses and lipid oxidation in overweight young male subjects. Research Methods and Procedures: Eleven overweight subjects were selected for a 4‐month endurance training program. Before and after the training period, they cycled for 60 minutes at 50% of their Vo 2max after an overnight fast or 3 hours after eating a standardized meal. Various metabolic and endocrine parameters, and respiratory exchange ratio values were evaluated. Results: Exercise‐induced plasma norepinephrine concentration increases were similar before and after training in fasted or fed conditions. After food intake, exercise promoted a decrease in plasma glucose and a higher increase in epinephrine than in fasting conditions. The increase in epinephrine after the meal was more marked after training (264 ± 32 vs. 195 ± 35 pg/mL). Training lowered the resting plasma nonesterified fatty acids. During exercise, changes in glycerol were similar to those found before training. Lipid oxidation during exercise was higher in fasting than in fed conditions (15.5 ± 1.4 vs. 22.3 ± 1.7 g/h). Training did not significantly increase fat oxidation when exercise was performed in fed conditions, but it did in fasting conditions (18.6 ± 1.4 vs. 27.2 ± 1.8 g/h). Discussion: Endurance training decreased plasma nonesterified fatty acids, cholesterol, and insulin concentrations. Training increased lipid oxidation during exercise, in fasting conditions, and not when exercise was performed after the meal. During exercise in overweight subjects, the fasting condition seems more suited to oxidizing fat and maintaining glucose homeostasis than a 3‐hour wait after a standard meal.  相似文献   

18.
The present study was carried out to elucidate whether an exercise-induced increase in plasma hydrogen ion concentration influences aldosterone secretion. Six healthy men (aged 22–25 years) performed two intermittent exercise tests with and without drug administration. The intensities of these exercise tests were 40% maximal oxygen uptake (O2max) and 90% O2max, respectively. Administration of 2-mg Dexamethasone and 50-mg Captopril caused an almost complete suppression of adrenocorticotropic hormone (ACTH) and an enhancement of the elevation in renin concentration during exercise, indicating successful inhibition of ACTH release and angiotensin II production during exercise. While the magnitude of the increase in aldosterone in the drug experiment was depressed compared with the control experiment, a significant increase in aldosterone concentration was observed at the end of the 90% O2max exercise. Whilst the change in aldosterone concentration did not correlate with the change in plasma potassium concentration, there was a significant correlation between aldosterone and plasma hydrogen ion concentrations in the drug experiment. Since the correlation coefficient was low (r=0.455), the biological meaning of this correlation should be further investigated. These results would suggest that an elevation of plasma hydrogen ion concentration induced by exercise per se appears to be related, at least in part, with increased aldosterone secretion, independent of the pituitary-adrenal axis, and the renin-angiotensin system. Accepted: 23 September 1997  相似文献   

19.
The purpose of this study was to investigate criteria for maximal effort in middle-aged men and women undertaking a maximal exercise test until they were exhausted if no measurements of oxygen uptake are made. A large group of 2164 men and 975 women, all active in sports and aged between 40 and 65 years, volunteered for a medical examination including a progressive exercise test to exhaustion on a cycle ergometer. In the 3rd min of recovery a venous blood sample was taken to determine the plasma lactate concentration ([la]p, 3min). Lactate concentration and maximal heart rate (f c, max) were lower in the women than in the men (P<0.001). Multiple regression analyses were performed to assess the contribution of sex to [la]p, 3 min, independent of age and f c max, It was found that [la]p,3 min was about 2.5 mmol·l–1 lower in women than in men of the same age and f c, max. In our population 88% of the men and 85% of the women met a combination of the following f c, max and [la]p, 3min criteria: f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 8 mmol·l–1 in the men and f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 5.5 mmol·1–1 in the women.  相似文献   

20.
The purpose of this study was to investigate the effect of single bouts of exercise at three different intensities on the redox state of human serum albumin (HSA) and on carbonyl groups on protein (CP) concentrations in plasma. Trained men [n = 44, maximal oxygen consumption (Vo(2max)): 55 +/- 5 ml.kg(-1).min(-1), nonsmokers, 34 +/- 5 years of age] from a homogenous population, volunteers from a police special forces unit, were randomly assigned to perform on a cycle ergometer either at 70% (n = 14), 75% (n = 14), or 80% (n = 16) of Vo(2max) for 40 min. Blood was collected before exercise, immediately after the exercise test (IE), and 30 min after each test (30M) and 30 h after each test (30H). The reduced fraction of HSA, human mercaptalbumin (HMA), decreased at all three exercise intensities IE and 30M, returning to preexercise values by 30H (P < 0.05). HMA was primarily oxidized to its reversible fraction human nonmercaptalbumin 1 (HNA1). CP concentrations increased at 75% of Vo(2max) IE and 30M with a tendency (P < 0.1) and at 80% Vo(2max) IE and 30M significantly, returning to preexercise concentrations by 30H (P < 0.01). These results indicate that the HSA redox system in plasma is activated after a single bout of cycle ergometer exercise at 70% Vo(2max) and 40 min duration. The extent of the HSA modification increased with exercise intensity. Oxidative protein damage, as indicated by CP, was only significantly increased at 80% Vo(2max) intensity in this homogenous cohort of trained men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号