首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyamines (PAs) are assumed to perform their functions through their oxidative product such as gamma-aminobutyric acid (GABA) formation. However, there is only limited information on the interrelation between PA degradation and GABA accumulation under salt stress. In order to reveal a quantitative correlation between PA oxidation and GABA accumulation, the effects of treatments with different NaCl concentrations, along with aminoguanidine (AG, a specific inhibitor of diamine oxidases (DAO; EC: 1.4.3.6)) and a recovery test from salt stress on endogenous free PAs, gamma-aminobutyric acid (GABA) accumulation and DAO activity were determined in roots of soybean [Glycine max (L.) Merr.] cultivar Suxie-1. The results showed that the levels of putrescine (Put), cadaverine (Cad), and spermidine (Spd) decreased significantly with increasing salt concentrations. This occurred because salt stress strongly promoted DAO activity to stimulate PA degradation. GABA accumulation increased with growing NaCl concentrations, about an 11- to 17-fold increase as compared with the control plants. AG treatment increased the accumulation of endogenous free PAs as a result of a strong retardation of DAO activity, but decreased GABA accumulation. The recovery for 6 days in 1/2 Hoagland solution from 100mM NaCl stress resulted in a decrease in DAO activity, a rebound of PA levels and a simultaneous reduction of GABA content. A close correlation was observed between the changes in DAO activity and GABA accumulation. The results indicated that higher GABA accumulation (about 39%) induced by salt stress could come from PA degradation, suggesting that PAs might perform their functions through GABA formation under salt stress.  相似文献   

2.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

3.
The effects of NaCl on putrescine (Put) content and diamine oxidase (DAO) activity in roots of rice seedlings were examined. NaCl treatment lowered the content of Put and increased the activity of DAO in roots. Our current results indicate that Cl is not required for NaCl-induced decline in Put content and increase in DAO activity in roots. Put content in roots of rice seedlings exposed to NaCl is possibly regulated by DAO activity.  相似文献   

4.
The use of in vitro shoot cultures to evaluate osmotic and salt tolerance and the effects of salt and mannitol in the medium on proline and sugar accumulation were investigated in two poplar species, P. euphratica and P. alba cv. Pyramidalis × P. tomentosa. Shoot length, leaf number, whole plant dry weight, and the accumulation of proline and total soluble sugars in leaves were quantified after 2 weeks. All P. euphratica plantlets survived at all levels of mannitol and NaCl, while the mortality of P. alba cv. Pyramidalis × P. tomentosa increased both at the mannitol and the NaCl treatments. A significant increase in proline accumulation was observed in both young and mature P. euphratica leaves at 200 mM mannitol and above, and at 150 mM NaCl and above. The total soluble sugar content increased in young P. euphratica leaves at 250 mM NaCl; however, it decreased in the mature leaves. Similar increases of the total soluble sugar content were not seen in P. alba cv. Pyramidalis × P. tomentosa plants in response to either mannitol or NaCl treatment. Our results suggest that accumulated proline and sugars promote osmotic and salt tolerance. The effects of accumulated proline and total soluble sugars on leaves are discussed in relation to growth and osmotic adjustment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water content (RWC) and the photosynthetic pigments (Chl a, b and carotenoids) contents also decreased with increasing NaCl concentration. On the other hand, Na, soluble sugars, soluble proteins, free amino acids including proline content and lipid peroxidation level and peroxidase activity were increased in the two plant organs with increasing of NaCl level. Electrolyte leakage from plant leaves was found to increase with salinity level. SA-pretreatment increased the RWC, fresh and dry weights, water, photosynthetic pigments, insolube saccharides, phosphorus content and peroxidase activity in the stressed seedlings. On the contrary, Na+, soluble proteins content, lipid peroxidation level, electrolyte leakage were markedly reduced under salt stress with SA than without. Under stress conditions, SA-pretreated plants exhibited less Ca2+ and more accumulation of K+, and soluble sugars in roots at the expense of these contents in the plant shoots. Exogenous application (Grain soaking presowing) of SA appeared to induce preadaptive response to salt stress leading to promoting protective reactions to the photosynthetic pigments and maintain the membranes integrity in barley plants, which reflected in improving the plant growth.  相似文献   

6.
The effect of NaCl on proline accumulation in rice leaves   总被引:1,自引:0,他引:1  
The regulation of proline accumulation in detached leaves of rice(Oryza sativa cv. Taichung Native 1) was investigated.Increasing concentrations of NaCl from 50 to 200 mM progressivelyincreased proline content in detached rice leaves. NaCl induced prolineaccumulation was mainly due to the effect of both Na+ andCl ions. Proline accumulation caused by NaCl was related toprotein proteolysis, an increase in ornithine--aminotransferaseactivity,a decrease in proline dehydrogenase activity, a decrease in prolineutilisation,and an increase in the content of the precursors of proline biosynthesis,ornithine and arginine. Results also show that proline accumulation caused byNaCl was associated with ammonium ion accumulation.  相似文献   

7.
Exogenous polyamines enhance copper tolerance of Nymphoides peltatum   总被引:2,自引:0,他引:2  
Wang X  Shi G  Xu Q  Hu J 《Journal of plant physiology》2007,164(8):1062-1070
The protective effects of polyamines (PAs) against copper (Cu) toxicity were investigated in the leaves of Nymphoides peltatum. Cu treatment increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put ratio in leaves. Exogenous application of Spd or Spm markedly reversed these Cu-induced effects for all three PAs and partially restored the (Spd+Spm)/Put ratio in leaves. It also significantly enhanced the level of proline, retarded the loss of soluble protein, decreased the rate of O2*- generation and H2O2 content, and prevented Cu-induced lipid peroxidation. Furthermore, exogenous Spd and Spm reduced the accumulation of Cu and effectively maintained the balance of nutrient elements in plant leaves under Cu stress. These results suggest that exogenous application of Spd or Spm can enhance the tolerance of N. peltatum to Cu by increasing the levels of endogenous Spd and Spm as well as the (Spd+Spm)/Put ratio.  相似文献   

8.
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na+ content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na+ content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2.  相似文献   

9.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

10.
The effect of triadimefon (TDM) on various biochemical parameters was studied in NaCl stressed radish (Raphanus sativus L.). Stress imposed by 80 mM NaCl decreased the protein content and proline oxidase activity, and increased the proline and glycine betaine contents, and protease, -glutamyl kinase and ATPase activities. The TDM treatment alleviated the stress by increasing protein, and glycine betaine contents, and by decreasing proline accumulation, and proline oxidase and ATPase activities.  相似文献   

11.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

12.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》2001,230(1):135-143
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots.  相似文献   

13.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

14.
采用温室盆栽试验研究不同NaCl浓度(0、50 和85 mmol/L)持续胁迫接种摩西球囊霉和地表球囊霉 2种AM真菌对加工番茄耐盐性的影响。结果显示:(1)在0 mmol/L NaCl处理条件下,2种菌的番茄菌根化苗的根系活力、叶片中可溶性糖、可溶性蛋白、根系脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性均高于非菌根植株,且丙二醛含量低于非菌根植株,但差异不显著。(2)在50、85 mmol/L NaCl浓度胁迫下,接种2种菌根真菌可显著提高番茄植株根系活力,促进叶片中可溶性糖、可溶性蛋白及根系脯氨酸含量的积累,显著提高叶片中与抗逆相关的超氧化物歧化酶和过氧化物酶的活性,减少丙二醛在根系中的积累;随着NaCl浓度的增加,效果更为明显。(3)RT-PCR分析显示,AM真菌和盐胁迫共同调控H+转运无机焦磷酸酶H+- PPase的表达,随NaCl浓度的增加,AVP1基因表达量下降,但菌根化番茄植株的AVP1基因表达量显著高于非菌根植株。研究表明,接种AM真菌后,菌根化植株可通过显著促进幼苗体内渗透调节物质积累和抗氧化酶活性的提高,有效降低体内膜脂过氧化水平,同时过量表达AVP1基因增加了番茄植株中离子向液泡膜的转运,从而缓解盐胁迫对植株的伤害,增强番茄幼苗对盐胁迫的耐性。  相似文献   

15.
2种鼠尾草对NaCl胁迫的耐受性比较及其生理机制研究   总被引:1,自引:0,他引:1  
以具有较高药用和观赏价值的美丽鼠尾草和贵州鼠尾草为实验材料,分析2种鼠尾草在NaCl(0、200、300、400、500、600mmol·L-1)胁迫下的生长、叶绿素含量、保护酶活性和有机渗透调节物质含量的变化,以明确2种鼠尾草对NaCl胁迫的耐受性差异及其生理机制。结果显示:(1)在实验NaCl浓度范围内,美丽鼠尾草的受害程度均高于贵州鼠尾草;(2)随着NaCl浓度的提高,贵州鼠尾草叶片叶绿素含量无显著变化,而美丽鼠尾草叶绿素含量逐渐显著降低;(3)当NaCl浓度从0增加到500mmol·L-1时,2种鼠尾草叶片的POD、CAT活性以及可溶性糖、可溶性蛋白质和脯氨酸含量逐渐升高,且美丽鼠尾草叶片的SOD活性也逐渐升高;(4)当NaCl浓度达到600mmol·L-1时,美丽鼠尾草叶片可溶性糖、可溶性蛋白质和脯氨酸含量继续增加,SOD、POD和CAT活性开始降低但仍显著高于对照,而贵州鼠尾草叶片的POD和CAT活性继续增加,可溶性糖、可溶性蛋白质和脯氨酸含量开始降低但仍显著高于对照。研究表明,贵州鼠尾草在NaCl胁迫下具有较高的渗透调节物质含量,而且随着NaCl浓度的增加能够维持较高的保护酶活性,因此对NaCl胁迫的耐受性强于美丽鼠尾草。  相似文献   

16.
The effect of moderate (50 M) and high (200 M) doses of Cd were studied in relation to polyamine (Pas) metabolism, proline level and the glutamine synthetase/glutamate synthase system (GS/GOGAT) activity in nodules and roots of soybean plants during 6 days of treatment. The lower Cd concentration increased putrescine (Put) in both nodules and roots, while 200 M Cd increased Spm only in nodules and Put in roots. Spermidine (Spd) decreased in roots under both Cd concentrations. Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were both involved in Put biosynthesis in roots. In nodules, Put formation could mainly be attributed to ODC activity. Diamine oxidase (DAO) activity was severely reduced by 50 and 200 M Cd either in nodules or roots. The GS/GOGAT system activity was depressed either with 50 or 200 M Cd, but most significantly with the highest metal concentration. Under 200 M Cd, GS activity decayed to 25% or 60% of the control in nodules and roots, respectively, while GOGAT decreased 85% in nodules and 79% in roots by day 4 of treatment. Ammonium increased greatly in nodules (200% over the controls) and roots (100%) under 200 M Cd. Proline concentration increased significantly in nodules and roots under both Cd treatments, more markedly under 200 M Cd. The relationship between Pas and proline accumulation and nitrogen assimilation is discussed.  相似文献   

17.
The present work is focused on the possible relationship between nitric oxide and the induction of proline in response to salt stress. The plants were subjected to 100 mM NaCl and sodium nitroprusside (SNP; the donor of NO) at different concentrations. The plants showed lower NaCl-induced oxidative stress and proline accumulation after application of low concentrations of SNP together with the NaCl treatment. The reduction in the proline content was related to increased activity of proline dehydrogenase. These results suggest that the NO could be capable of mitigating damage associated with salt stress.  相似文献   

18.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.  相似文献   

19.
Two soybean (Glycine max (L.) Merr.) cultivars, Tachiyutaka and Dare, were grown in pots at 30 and 70 % relative humidity (RH) and treated with 0 (control), 40 (moderate), 80 and 120 (severe) mM NaCl for 3 weeks. Increasing RH enhanced growth of salt sensitive cultivar, Tachiyutaka, but had no effect on salt tolerant cultivar, Dare, under control and moderate saline conditions. Both cultivars benefited from elevated humidity under severe saline conditions. Cultivar Tachiyutaka had poorer ability for controlling translocation of Na+ to the leaves, lower Na+ exclusion ability in the roots, and lower root activity under NaCl treatment, compared with cv. Dare. The increased growth of cv. Tachiyutaka at high RH was consistent with decreased Na+ accumulation in the leaves, increased stomatal conductance and root activity, while the unchanged growth of cv. Dare was consistent with similar Na+ accumulation in the leaves, and the decreased root activity.  相似文献   

20.
Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated Na and declined in K, Ca and Mg contents. Na/K ratio increased steadily as a function of external NaCl treatment. NaCl induced significant differences in quality and quantity of proteins, whereas, proline accumulation remained more or less constant with treatment. NaCl stress enhanced the activity of superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7). Further in the isoenzyme studies, four SOD isoenzymes (SOD 1, 2, 3, and 4) and two POX isoenzymes (POX 1 and 2) were detected with the treatment. NaCl strongly induced activity of SOD 4 isoenzyme in 40, 60, 80 mM and POX 2 isoenzyme in 40 and 80 mM NaCl concentrations. Increase in antioxidant enzymes activity could be a response to cellular damage induced by NaCl. This increase could not stop the deleterious effects of NaCl, but it reduced stress severity and thus allowed cell growth to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号