首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
Elongation factor Ts (EF-Ts) is the guanine nucleotide exchange factor for elongation factor Tu (EF-Tu). An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu. In this study, the contribution of His-118 to nucleotide release was studied by pre-steady state kinetic analysis of nucleotide exchange in EF-Tu mutants in which His-118 was replaced by Ala or Glu. Intrinsic as well as EF-Ts-catalyzed release of GDP/GTP was affected by the mutations, resulting in an approximately 10-fold faster spontaneous nucleotide release and a 10-50-fold slower EF-Ts-catalyzed nucleotide release. The effects are attributed to the interference of the mutations with the EF-Ts-induced movements of the P-loop of EF-Tu and changes at the domain 1/3 interface, leading to the release of the beta-phosphate group of GTP/GDP. The K(d) for GTP is increased by more than 40 times when His-118 is replaced with Glu, which may explain the inhibition by His-118 mutations of aminoacyl-tRNA binding to EF-Tu. The mutations had no effect on EF-Tu-dependent delivery of aminoacyl-tRNA to the ribosome.  相似文献   

2.
Nucleotide exchange in elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). Similarly to other GTP-binding proteins, the structural changes in the P loop and the Mg(2+) binding site are known to be important for nucleotide release from EF-Tu. In the present paper, we determine the contribution of the contacts between helix D of EF-Tu at the base side of the nucleotide and the N-terminal domain of EF-Ts to the catalysis. The rate constants of the multistep reaction between Escherichia coli EF-Tu, EF-Ts, and GDP were determined by stopped-flow kinetic analysis monitoring the fluorescence of either Trp-184 in EF-Tu or mant-GDP. Mutational analysis shows that contacts between helix D of EF-Tu and the N-terminal domain of EF-Ts are important for both complex formation and the acceleration of GDP dissociation. The kinetic results suggest that the initial contact of EF-Ts with helix D of EF-Tu weakens binding interactions around the guanine base, whereas contacts of EF-Ts with the phosphate binding side that promotes the release of the phosphate moiety of GDP appear to take place later. This "base-side-first" mechanism of guanine nucleotide release resembles that found for Ran x RCC1 and differs from mechanisms described for other GTPase x GEF complexes where interactions at the phosphate side of the nucleotide are released first.  相似文献   

3.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

4.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

5.
An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.  相似文献   

6.
Catalytic properties of the elongation factors from Thermus thermophilus HB8 have been studied and compared with those of the factors from Escherichia coli. 1. The formation of a ternary guanine-nucleotide . EF-Tu . EF-Ts complex was demonstrated by gel filtration of the T. thermophilus EF-Tu . EF-Ts complex on a Sephadex G-150 column equilibrated with guanine nucleotide. The occurrence of this type of complex has not yet been proved with the factors from E. coli. 2. The dissociation constants for the complexes of T. thermophilus EF-Tu . EF-Ts with GDP and GTP were 6.1 x 10(-7) M and 1.9 x 10(-6) M respectively. On the other hand, T. thermophilus EF-Tu interacted with GDP and GTP with dissociation constants of 1.1 x 10(-9) M and 5.8 x 10(-8) M respectively. This suggests that the association of EF-Ts with EF-Tu lowered the affinity of EF-Tu for GDP by a factor of about 600 and facilitated the nucleotide exchange reaction. 3. Although the T. thermophilus EF-Tu . EF-Ts complex hardly dissociates into EF-Tu and EF-Ts, a rapid exchange was observed between free EF-Ts and the EF-Tu . EF-Ts complex using 3H-labelled EF-Ts. The exchange reaction was independent on the presence or absence of guanine nucleotides. 4. Based on the above findings, an improved reaction mechanism for the regeneration of EF-Tu . GTP from EF-Tu . GDP is proposed. 5. Studies on the functional interchangeability of EF-Tu and EF-Ts between T. thermophilus and E. coli has revealed that the factors function much more efficiently in the homologous than in the heterologous combination. 6. T. thermophilus EF-Ts could bind E. coli EF-Tu to form an EF-Tu (E. coli) . EF-Ts (T. thermophilus hybrid complex. The complex was found to exist in a dimeric form indicating that the property to form a dimer is attributable to T. thermophilus EF-Ts. On the other hand, no stable complex between E. coli EF-Ts and T. thermophilus EF-Tu has been isolated. 7. The uncoupled GTPase activity of T. thermophilus EF-G was much lower than that of E. coli EF-G. T. thermophilus EF-G formed a relatively stable binary EF-G . GDP complex, which could be isolated on a nitrocellulose membrane filter. The Kd values for EF-G . GDP and EF-G . GTP were 6.7 x 10(-7) M and 1.2 x 10(-5) M respectively. The ternary T. thermophilus EF-G . GDP . ribosome complex was again very stable and could be isolated in the absence of fusidic acid. The stability of the latter complex is probably the cause of the low uncoupled GTPase activity of T. thermophilus EF-G.  相似文献   

7.
The effects of varying concentrations of GDP on the stability of homologous and heterologous EF-Tu:EF-Ts complexes formed with the elongation factors from the chloroplast of Euglena gracilis and from E. coli have been investigated. The complexes formed with chloroplast EF-Ts were significantly more stable to GDP-induced dissociation than those formed with E. coli EF-Ts. The complex between chloroplast EF-Tu and chloroplast EF-Ts required nearly 1,000-fold higher concentrations of GDP for dissociation than the complex between chloroplast EF-Tu and E. coli EF-Ts. The E. coli EF-Tu:chloroplast EF-Ts complex required nearly 100-fold higher levels of GDP for dissociation than the E. coli EF-Tu:E. coli EF-Ts complex.  相似文献   

8.
The kinetics of the heterologous exchange of GDP bound to EF-Tu by free GTP catalysed by EF-Ts have been analysed with a view to correlating results obtainable with different computational procedures. The affinity of EF-Ts for EF-Tu.GTP was found to be somewhat less than previously proposed by Romero et al. (Biochemistry 260, 6167:1985) though still greater than for EF-Tu.GDP. There is a close interrelationship between the constants for the binding of GTP to EF-Tu.EF-Ts and of EF-Ts to EF-Tu.GTP. The declining fractional rate of exchange observed by Romero et al. during displacement of GDP by GTP appears to be dependent on the ratio of the rate constants (k-1 + k-2)k4/k1k-2 as defined in the text, not on that of K4/K1 as they proposed.  相似文献   

9.
Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to measure the equilibrium dissociation constant of the EF-Tu(mt) x GDP complex (K(GDP) = 1.0 +/- 0.1 microM). Competition of GTP with a fluorescent derivative of GDP (mantGDP) for binding to EF-Tu(mt) was used to measure the dissociation constant of the EF-Tu(mt) x GTP complex (K(GTP) = 18 +/- 9 microM). The analysis of these data required information on the dissociation constant of the EF-Tu(mt) x mantGDP complex (K(mGDP) = 2.0 +/- 0.5 microM), which was measured by equilibrium dialysis. Both K(GDP) and K(GTP) for EF-Tu(mt) are quite different (about two orders of magnitude higher) than the dissociation constants of the corresponding complexes formed by Escherichia coli EF-Tu. The forward and reverse rate constants for the association and dissociation of the EF-Tu(mt) x GDP complex were determined using the change in the fluorescence of mantGDP upon interaction with EF-Tu(mt). These values are in agreement with a simple equilibrium binding interaction between EF-Tu(mt) and GDP. The results obtained are discussed in terms of the recently described crystal structure of the EF-Tu(mt) x GDP complex.  相似文献   

10.
Catalytic effects of elongation factor Ts on polypeptide synthesis   总被引:4,自引:2,他引:2       下载免费PDF全文
The kinetic parameters which characterize the interaction between elongation factor Tu (EF-Tu) and elongation factor Ts (EF-Ts) have been determined in a poly(uridylic acid)-primed translation system. The EF-Ts catalyzed release of GDP from EF-Tu was measured independently in a nucleotide exchange assay. We conclude that the rate-limiting step for the EF-Tu cycle in protein synthesis in the absence of EF-Ts is the release of GDP. By adding EF-Ts the time of this step is reduced from 90 s to 30 ms. Half maximal rate is obtained at an EF-Ts concentration of 2.5 x 10−6 M.  相似文献   

11.
Previous studies have shown that when bovine mitochondrial elongation factor Ts (EF-Ts) is expressed in Escherichia coli, it forms a tightly associated complex with E. coli elongation factor Tu (EF-Tu). In contrast to earlier experiments, purification of free mitochondrial EF-Ts was accomplished under nondenaturing conditions since only about 60% of the expressed EF-Ts copurified with E. coli EF-Tu. The bovine mitochondrial EF-Tu:GDP complex, the homologous mitochondrial EF-Tu:EF-Ts complex, and the heterologous E. coli/mitochondrial EF-Tu:EF-Ts complex were isolated and crystallised. The crystals of the EF-Tu:GDP complex diffract to 1.94 A and belong to space group P2(1) with cell parameters a=59.09 A, b=119.78 A, c=128.89 A and beta=96.978 degrees. The crystals of the homologous mitochondrial EF-Tu:EF-Ts complex diffract to 4 A and belong to space group C2 with cell parameters a=157.7 A, b=151.9 A, c=156.9 A, and beta=108.96 degrees.  相似文献   

12.
Escherichia coli elongation factor (EF-Tu) and the corresponding mammalian mitochondrial factor, EF-Tumt, show distinct differences in their affinities for guanine nucleotides and in their interactions with elongation factor Ts (EF-Ts) and mitochondrial tRNAs. To investigate the roles of the three domains of EF-Tu in these differences, six chimeric proteins were prepared in which the three domains were systematically switched. E. coli EF-Tu binds GDP much more tightly than EF-Tumt. This difference does not reside in domain I alone but is regulated by interactions with domains II and III. All the chimeric proteins formed ternary complexes with GTP and aminoacyl-tRNA although some had an increased or decreased activity in this assay. The activity of E. coli EF-Tu but not of EF-Tumt is stimulated by E. coli EF-Ts. The presence of any one of the domains of EF-Tumt in the prokaryotic factor reduced its interaction with E. coli EF-Ts 2-3-fold. In contrast, the presence of any of the three domains of E. coli EF-Tu in EF-Tumt allowed the mitochondrial factor to interact with bacterial EF-Ts. This observation indicates that even domain II which is not in contact with EF-Ts plays an important role in the nucleotide exchange reaction. EF-Tsmt interacts with all of the chimeras produced. However, with the exception of domain III exchanges, it inhibits the activities of the chimeras indicating that it could not be productively released to allow formation of the ternary complex. The unique ability of EF-Tumt to promote binding of mitochondrial Phe-tRNAPhe to the A-site of the ribosome resides in domains I and II. These studies indicate that the interactions of EF-Tu with its ligands is a complex process involving cross-talk between all three domains.  相似文献   

13.
The fluorescence polarization technique has been used to study the interaction of the EF-Ts dansyl derivative with EF-Tu after nucleotide exchange and binding of the aminoacyl-tRNA to EF-Tu.GTP. It is shown that the ternary complex formation results in the increase of EF-Ts affinity to EF-Tu and EF-Ts remains bound to EF-Tu up to the GTP hydrolysis stage on the ribosome.  相似文献   

14.
The intrinsic fluorescence properties of elongation factor Tu (EF-Tu) in its complexes with GDP and elongation factor Ts (EF-Ts) have been investigated. The emission spectra for both complexes are dominated by the tyrosine contribution upon excitation at 280 nm whereas excitation at 300 nm leads to exclusive emission from the single tryptophan residue (Trp-184) of EF-Tu. The fluorescence lifetime of this tryptophan residue in both complexes was investigated by using a multifrequency phase fluorometer which achieves a broad range of modulation frequencies utilizing the harmonic content of a mode-locked laser. These results indicated a heterogeneous emission with major components near 4.8 ns for both complexes. Quenching experiments on both complexes indicated limited accessibility of the tryptophan residue to acrylamide and virtually no accessibility to iodide ion. The quenching patterns exhibited by EF-Tu-GDP and EF-Tu X EF-Ts were, however, different; both quenchers were more efficient at quenching the emission from the EF-Tu x EF-Ts complex. Steady-state and dynamic polarization measurements revealed limited local mobility for the tryptophan in the EF-Tu x GDP complex whereas formation of the EF-Tu x EF-Ts complex led to a dramatic increase in this local mobility.  相似文献   

15.
We have studied the properties of a mutant elongation factor Tu, encoded by tufB (EF-TuBo), in which Gly-222 is replaced by Asp. For its purification from the kirromycin-resistant EF-Tu encoded by tufA (EF-TuAr), a method was developed by exploiting the different affinities to kirromycin of the two factors and the competition between kirromycin and elongation factor Ts (EF-Ts) for binding to EF-Tu. The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50. For the first time we have succeeded in obtaining a tufB product in homogeneous form. Compared with wild-type EF-Tu, EF-TuBo displays essentially the same affinity for GDP and GTP, with only the dissociation rate of EF-Tu GTP being slightly faster. Protection of amino-acyl-tRNA (aa-tRNA) against nonenzymatic deacylation by different EF-Tu species indicates that conformational alterations occur in the ternary complex EF-TuBo GTP aa-tRNA. However, the most dramatic modification is found in the EF-TuBo interaction with the ribosome. Its activity in poly(Phe) synthesis as well as in the GTPase activity associated with the interaction of its ternary complex with the ribosome mRNA complex requires higher Mg2+ concentrations than wild-type EF-Tu (Mg2+ optimum at 10-14 vs. 6 mM), even if EF-TuBo can sustain enzymatic binding of aa-tRNA to ribosomes at low Mg2+. The anomalous behavior of EF-TuBo is reflected in a remarkable increase of the fidelity in poly(Phe) synthesis, especially at high Mg2+ concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation.  相似文献   

17.
Navratil T  Spremulli LL 《Biochemistry》2003,42(46):13587-13595
Elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA to the A-site of the ribosome. In a multiple-sequence alignment of prokaryotic EF-Tu's, Gln97 is nearly 100% conserved. In contrast, in mammalian mitochondrial EF-Tu's, the corresponding position is occupied by a conserved proline residue. Gln97 is located in the switch II region in the GDP/GTP binding domain of EF-Tu. This domain undergoes a significant structural rearrangement upon GDP/GTP exchange. To investigate the role of Gln97 in bacterial EF-Tu, the E. coli EF-Tu variant Q97P was prepared. The Q97P variant displayed no activity in the incorporation of [(14)C]Phe on poly(U)-programmed E. coli ribosomes. The Q97P variant bound GDP more tightly than the wild-type EF-Tu with K(d) values of 7.5 and 12 nM, respectively. The intrinsic rate of GDP exchange was 2-3-fold lower for the Q97P variant than for wild-type EF-Tu in the absence of elongation factor Ts (EF-Ts). Addition of EF-Ts equalized the GDP exchange rate between the variant and wild-type EF-Tu. The variant bound GTP at 3-fold lower levels than the wild-type EF-Tu. Strikingly, the Q97P variant was completely inactive in ternary complex formation, accounting for its inability to function in polymerization. The structural basis of these observations is discussed.  相似文献   

18.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

19.
We have studied the effects of specific amino acid replacements in EF-Tu upon the protein's interactions with guanine nucleotides and elongation factor Ts (EFTs). We found that alterations at the lysine residue of the Asn-Lys-Cys-Asp sequence, the guanine ring-binding sequence, differentially affect the protein's ability to bind guanine nucleotides. Wild type EF-Tu (Lys-136) binds GDP and GTP much more tightly than do many of the altered proteins. Replacing lysine by arginine lowers the protein's affinity for GDP by about 20-fold relative to the change in its affinity for EF-Ts. Substitutions at residue 136 by glutamine (K136Q) and glutamic acid (K136E) further lower the protein relative affinity for GDP by factors of about 4 and 10, respectively. In contrast, replacement of the residue by isoleucine (K136I) eliminates guanine nucleotide binding as well as EF-Ts binding. Apparently, the distortion of this loop by substitution at residue 136 of a bulky hydrophobic residue can hamper the binding for both substrates or disrupt the folding of the protein. All altered proteins except EF-Tu(K136I) are able to bind tRNA(Phe); however, they require much higher concentrations of GTP than wild type EF-Tu. In minimal media, Escherichia coli cells harboring plasmids encoding EF-Tu(K136E) or EF-Tu(K136Q) suffer growth retardation relative to cells bearing the same plasmid encoding wild type EF-Tu. Co-transformation of these cells with a compatible plasmid bearing the EF-Ts gene reverses this growth problem. The growth retardation effect of some of the altered proteins can be explained by their sequestering EF-Ts. These results indicate that EF-Ts is essential to the growth of E. coli and suggest a technique for studying EF-Ts mutants as well as for identifying other guanine nucleotide exchange enzymes.  相似文献   

20.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号