首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%~41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.  相似文献   

3.
Sucrose (and raffinose), trehalose, maltose, cellobiose, and lactose were examined for their transport into Rhodotorula glutinis. Melibiose and lactose were found not to be transported at all. Sucrose, raffinose and trehalose are split by periplasmic hydrolases prior to the penetration of their monosaccharide components into cells, the hydrolysis being the rate-limiting factor for the uptake process. Maltose and cellobiose appear to use specific uptake systems. Experiments with protoplasts of Rhodotorula glutinis support the conclusions that sucrose and trehalose are not consumed in the absence of exoenzymes.  相似文献   

4.
In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.  相似文献   

5.
Summary D-Glucose and D-xylose addition to not-growing Rhodotorula gracilis cells brings about alterations in pyruvate kinase and phosphoenolpyruvate carboxykinase activities characteristic for glycolysis and gluconeogenesis, respectively.Abbreviations used PK Pyruvate kinase (EC 2.7.1.40) - PEPCK Phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - PFK Phosphofructokinase (EC 2.7.1.11)  相似文献   

6.
Rhodotorula mucilaginosa is an obligate aerobic yeast which contains a high concentration of carotenoid pigment. To test whether carotenoids are able to protect R. mucilaginosa against oxidative injury, yeast cells in liquid culture were incubated with duroquinone (DQ) (100 microM), a redox-cycling quinone known to generate intracellular O2-. or were grown in a hyperoxic atmosphere (80% O2) under conditions where carotenoid concentrations were altered either intracellularly or extracellularly. Neither of these oxidative challenges affected cell growth unless carotenogenesis was blocked by the addition of diphenylamine (50 microM). In the diphenylamine-treated nonpigmented cells, growth was completely inhibited by DQ and by hyperoxia. In normoxia, however, diphenylamine alone reduced growth by only 30%. The growth inhibition observed in diphenylamine-treated cells exposed to hyperoxia was primarily mycocidal rather than mycostatic since plating of these cells onto solid media revealed that only 25% of the cells were viable after 50 h of incubation when compared to plated control cells. Addition of 10 microM beta-carotene to diphenylamine-treated cells completely prevented the growth inhibition caused by either hyperoxia or DQ. Carotenoids, therefore, are able to prevent oxidant-induced cytotoxicity in R. mucilaginosa. Analysis of the absorption spectra of chloroform extracts of beta-carotene-supplemented cells showed that beta-carotene, not the endogenous carotenoid, torularhodin, was the major carotenoid present in these cells. Superoxide dismutase (SOD) activity in R. mucilaginosa was compared with that of another yeast, Saccharomyces cerevisiae by two methods: (i) activity staining of proteins separated by gel electrophoresis and (ii) measurement of inhibition of ferricytochrome c reduction. By these techniques, the R. mucilaginosa SOD activity had the characteristics of Mn-SOD. No Cu/ZnSOD activity was detected. Thus, the apparent absence of Cu/ZnSOD may make the antioxidant capability of endogenous carotenoids even more critical in preventing oxidative damage in R. mucilaginosa.  相似文献   

7.
Abstract The imperfect yeast, Rhodotorula mucilaginosa utilized nitrogen of 1-chloromethylsilatrane (CMS) as a sole nitrogen source when grown on glucose, glycerol, methanol, ethanol and succinate. Under such conditions and at concentrations from 0.45 to 4.5 mM, CMS was a growth-limiting factor. Atomic absorption spectrometry revealed the accumulation of silicon compounds in the cultural liquid which were chloroform-insoluble in contrast to CMS. The following pathway of the partial decomposition of CMS is propoposed: CMS → chloromethylsilanethryol → bis(chloromethyldisiloxane) tetraol.  相似文献   

8.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

9.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h(-1)). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm(-2) protein, 197 μg cm(-2) polysaccharide and 6.9 × 10(6) CFU cm(-2) on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

10.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

11.
12.
胶红酵母JB401降解脱色三苯甲烷类染料   总被引:1,自引:0,他引:1  
从烟梗中分离筛选得到1株能够对三苯甲烷类染料高效脱色的微生物,经ITS-5.8S rDNA分析鉴定为胶红酵母,命名为Rhodotorula mucilaginosa JB401。全波长扫描实验结果证实染料的脱色由胶红酵母降解结晶紫引起。为了提高R.mucilaginosa JB401脱色结晶紫的能力,通过单因素试验对R.mucilaginosa JB401的培养条件进行了优化,得出菌体生长24 h后以2%接种量接入初始pH为5的脱色培养基并在37℃摇床培养,可以取得最优脱色效果,此时脱色50、100和200 mg/L的结晶紫达到90%去除率分别需要3、6和14 h。此外,胶红酵母对温度和pH良好的适应性使其具有应用于工业废水处理的潜力。  相似文献   

13.
The red yeast Rhodotorula mucilaginosa produced an esterase that accumulated in the culture supernatant on induction with triacetin. The enzyme was specific for substrates bearing an O-acetyl group, but was relatively nonspecific for the rest of the molecule, which could consist of a phenol, a monosaccharide, a polysaccharide, or an aliphatic alcohol. The esterase was more active against acetylxylan and glucose beta-d-pentaacetate than were a number of esterases from plant and animal sources, when activities on 4-nitrophenyl acetate were compared. The enzyme exhibited Michaelis-Menten kinetics and was active over a broad pH range (5.5 to 9.2), with an optimum between pH 8 and 10. In addition, the enzyme retained its activity for 2 h at 55 degrees C. The yeast that produced the enzyme did not produce xylanase and, hence, is of interest for the production of acetylxylan esterase that is free of xylanolytic activity.  相似文献   

14.
Idris  Nur Fazleen Binti  Huang  Guowang  Jia  Qianying  Yuan  Lin  Li  Yimin  Tu  Zeng 《Mycopathologia》2020,185(2):373-376
Mycopathologia - Trichosporon asahii and Rhodotorula mucilaginosa are important fungal species causing disseminated disease in immunocompromised patients. Onychomycosis prevalence rate ranges from...  相似文献   

15.
Shi  Cuijuan  Zhang  Hong  Yu  Kai  Wang  Yingying  Jiang  Jie  Ju  Yun  Zhang  Chuanzhou  Cheng  Ziyi  Kan  Guangfeng 《Molecular biology reports》2021,48(8):5847-5855
Molecular Biology Reports - The mitogen-activated protein kinase (MAPK) cascades play important roles in various signaling transduction networks of biotic and abiotic stress responses. However,...  相似文献   

16.
A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30?g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5?g/l of furfural stimulated production of xylitol to 77?% of theoretical yield (10?% higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3?g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99?% of theoretical yield (15?% higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5?g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.  相似文献   

17.
18.
基于降低微生物类胡萝卜素生产成本的考虑,采用番茄渣、豆粕的纤维素酶酶解产物培养胶红酵母,以单位体积发酵液中的总类胡萝卜素浓度增量作为优化目标,先后运用逐步单因素法和均匀设计法系统性地考查了胶红酵母的总类胡萝卜素产量和增量与各个相关因素之间的关系。实验获得的总类胡萝卜素最大产量以及扣除了番茄渣中的类胡萝卜素含量而计算得到的增量分别为12.25 mg/L和10.25 mg/L。实验结果证明设计的生产工艺能够以较低的成本生产出富含类胡萝卜素的饲料,因而是经济可行的。  相似文献   

19.
Nitrate and ammonium were shown to alter the growth ofRhodotorula glutinis var.salinaria in saline and non-saline media. In saline medium in which ammonium was the sole nitrogen source, ammonium inhibited growth in the presence of molybdate ions. Detailed comparisons of the growth in saline and non-saline media when nitrate was supplemented in the presence of molybdate ions showed that differences in utilizability of purine bases of nucleic acid were responsible for the differences in growth,i.e. adenine increased the growth in such saline medium, but decreased it in non-saline medium. There was not such a specific requirement for adenine in saline medium in the presence of molybdate ions when nitrate was substituted for ammonium as the sole nitrogen source. It was suggested that adenine might provide the necessary skeleton of nucleic acid for serving nitrate reduction in saline medium.  相似文献   

20.
d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号