首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

2.
Long-term and high-dose treatment with metformin is known to be associated with vitamin B12 deficiency in patients with type 2 diabetes. We investigated whether the prevalence of B12 deficiency was different in patients treated with different combination of hypoglycemic agents with metformin during the same time period. A total of 394 patients with type 2 diabetes treated with metformin and sulfonylurea (S+M group, n = 299) or metformin and insulin (I+M group, n = 95) were consecutively recruited. The vitamin B12 and folate levels were quantified using the chemiluminescent enzyme immunoassay. Vitamin B12 deficiency was defined as vitamin B12≤300 pg/mL without folate deficiency (folate>4 ng/mL). The mean age of and duration of diabetes in the subjects were 59.4±10.5 years and 12.2±6.7 years, respectively. The mean vitamin B12 level of the total population was 638.0±279.6 pg/mL. The mean serum B12 levels were significantly lower in the S+M group compared with the I+M group (600.0±266.5 vs. 757.7±287.6 pg/mL, P<0.001). The prevalence of vitamin B12 deficiency in the metformin-treated patients was significantly higher in the S+M group compared with the I+M group (17.4% vs. 4.2%, P = 0.001). After adjustment for various factors, such as age, sex, diabetic duration, duration or daily dose of metformin, diabetic complications, and presence of anemia, sulfonylurea use was a significant independent risk factor for B12 deficiency (OR = 4.74, 95% CI 1.41–15.99, P = 0.012). In conclusion, our study demonstrated that patients with type 2 diabetes who were treated with metformin combined with sulfonylurea require clinical attention for vitamin B12 deficiency and regular monitoring of their vitamin B12 levels.  相似文献   

3.
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q max, K s and K i of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t 1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.  相似文献   

4.
A cDNA gene encoding a mature peptide of the mono- and diacylglycerol lipase (abbreviated to PcMdl) from Penicillium cyclopium PG37 was cloned and expressed in Pichia pastoris GS115. The recombinant PcMdl (rePcMdl) with an apparent molecular weight of 39 kDa showed the highest activity (40.5 U/mL of culture supernatant) on 1,2-dibutyrin substrate at temperature 35°C and pH 7.5. The rePcMdl was stable at a pH range of 6.5–9.5 and temperatures below 35°C. The activity of rePcMdl was inhibited by Hg2+ and Fe3+, but not significantly affected by EDTA or the other metal ions such as Na+, K+, Li+, Mg2+, Zn2+, Ca2+, Mn2+, Cu2+, and Fe2+. PcMdl was identified to be strictly specific to mono- and diacylglycerol, but not triacylglycerol. Stereographic view of PcMdl docked with substrate (tri- or diacylglycerol) analogue indicated that the residue Phe256 plays an important role in conferring the substrate selectivity. Phe256 projects its side chain towards the substrate binding groove and makes the sn-1 moiety difficult to insert in. Furthermore, sn-1 moiety prevents the phosphorus atom (substitution of carboxyl carbon) from getting to the Oγ of Ser145, which results in the failure of triacylglycerol hydrolysis. These results should provide a basis for molecular engineering of PcMdl and expand its applications in industries.  相似文献   

5.
The Santalum peroxidase was extracted from the leaves and precipitated with double volume of chilled acetone. The optimum percent relative activity for the Santalum peroxidase was observed at pH 5.0 and 50 °C temperature. The Santalum peroxidase per cent relative activity was stimulated in the presence of phenolic compounds like ferrulic acid and caffeic acids; however, indole-3-acetic acid (IAA) and protocatechuic acid act as inhibitors. All divalent cations Fe2+, Mn2+, Mg2+, Cu2+ and Zn2+ stimulate the relative activity of the Santalum peroxidase at concentration of 2.0 μM. Amino acids like L-alanine and L-valine activate the per cent relative activity, while L-proline and DL-methionine showed moderate inhibition for the Santalum peroxidase. However, a very low a concentration of cysteine acts as a strong inhibitor of Santalum peroxidase at the concentration of 0.4 mM. Native polyacrylamide gel electrophoresis (Native-PAGE) was performed for isoenzyme determination and two bands were observed. Km and Vmax values were calculated from Lineweaver-Burk graph. The apparent Vmax/Km value for O-dianisidine and H2O2 were 400 and 5.0 × 105 Units/min/mL respectively.  相似文献   

6.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

7.
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.  相似文献   

8.
To determine the contribution of sigma B (ςB) to survival of stationary-phase Listeria monocytogenes cells following exposure to environmental stresses, we compared the viability of strain 10403S with that of an isogenic nonpolar sigB null mutant strain after exposure to heat (50°C), ethanol (16.5%), or acid (pH 2.5). Strain viabilities were also determined under the same conditions in cultures that had been previously exposed to sublethal levels of the same stresses (45°C, 5% ethanol, or pH 4.5). The ΔsigB and wild-type strains had similar viabilities following exposure to ethanol and heat, but the ΔsigB strain was almost 10,000-fold more susceptible to lethal acid stress than its parent strain. However, a 1-h preexposure to pH 4.5 yielded a 1,000-fold improvement in viability for the ΔsigB strain. These results suggest the existence in L. monocytogenes of both a ςB-dependent mechanism and a pH-dependent mechanism for acid resistance in the stationary phase. ςB contributed to resistance to both oxidative stress and carbon starvation in L. monocytogenes. The ΔsigB strain was 100-fold more sensitive to 13.8 mM cumene hydroperoxide than the wild-type strain. Following glucose depletion, the ΔsigB strain lost viability more rapidly than the parent strain. ςB contributions to viability during carbon starvation and to acid resistance and oxidative stress resistance support the hypothesis that ςB plays a role in protecting L. monocytogenes against environmental adversities.  相似文献   

9.
Hyaluronidase (E.C. 4.2.2.1 hyaluronate lyase) or Mu toxin is one of the main components ofClostridium perfringens toxin complex. Although this enzyme has been studied for many years, data on its physico-chemical and catalytic characteristics are still quite contradictory and lack lucidity and completeness. In order to update knowledge of enzymatic properties of clostridial hyaluronidase, a chromatographically purified preparation from C. perfringens type A BP6K free of side phospholipase C (alpha toxin), neuraminidase (sialidase) and collagenase (kappa toxin) activities was obtained and characterized. The purification procedure included the following steps: processing the culture liquid with calcium phosphate gel, precipitation of the enzyme with acetone, ultrafiltration, and chromatography on Sephadex G-100 column. The purified hyaluronidase was homogenous as judged by rechromatography, SDS-PAGE and isoelectric focusing. Being a glycoprotein, the enzyme was most active at pH 5.7–6.2 (depending on the nature of the buffer used), at temperatures 37–45°C and at a relatively high ionic strength (0.15 and higher). The hyaluronidase was unstable when at pH values below 5.0 and above 9.0 as well as at temperatures below 30°C and above 50°C. The enzyme was most sensitive to Cu2+, Pb2+and Al3+ions, while the inhibitory effect of EDTA was moderate. Molecular mass of hyaluronidase was 96kDa as estimated by gel filtration and 48kDa when estimated by SDS-PAGE, suggesting that enzyme is composed of two subunits. The isoelectric point of the enzyme was 4.4. Substrate specificity of the enzyme was narrow (appart from hyaluronate, it slightly split chondroitin, but did not split heparin and various chondroitinsulphates). Moreover, unsplit glycosaminoglycans appeared to be competitive inhibitors with Kivalues 5.3×10−2, 4.9×10−2, 4.5×10−2and 4.2×10−2mg/mL for heparin, chondroitinsulphates A, B and C, respectively. The Michaelis constant in regard to potassium hyaluronate was calculated to be (15.4±2.6)×10−2mg/mL.  相似文献   

10.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

11.
A New Alkali-Thermostable Azoreductase from Bacillus sp. Strain SF   总被引:3,自引:0,他引:3       下载免费PDF全文
A screening for dye-decolorizing alkali-thermophilic microorganisms resulted in a Bacillus sp. strain isolated out of the wastewater drain of a textile finishing company. An NADH-dependent azoreductase of this strain, Bacillus sp. strain SF, was found to be responsible for the decolorization of azo dyes. This enzyme was purified by a combination of ammonium sulfate precipitation and anion-exchange and affinity chromatography and had a molecular mass of 61.6 kDa and an isoelectric point at pH 5.3. The pH optimum of the azoreductase depended on the substrate and was within the range of pHs 8 to 9, while the temperature maximum was reached at 80°C. Decolorization only took place in the absence of oxygen and was enhanced by FAD, which was not consumed during the reaction. A 26% similarity of this azoreductase to chaperonin Cpn60 from a Bacillus sp. was found by peptide mass mapping experiments. Substrate specificities of the azoreductase were studied by using synthesized model substrates based on di-sodium-(R)-benzyl-azo-2,7-dihydroxy-3,6-disulfonyl-naphthaline. Those dyes with NO2 substituents, especially in the ortho position, were degraded fastest, while analogues with a methyl substitution showed the lowest degradation rates.  相似文献   

12.
A Gram negative, yellow pigmented, rod shaped bacterium designated as RLT was isolated from a hot water spring (90–98 °C) located at Manikaran in Northern India. The isolate grows at 60–80 °C (optimum, 70 °C) and at pH 7.0–9.0 (optimum pH 7.2). Phylogenetic analysis of 16S rRNA gene sequences and levels of DNA–DNA relatedness together indicate that the new isolate represents a novel species of the genus Thermus with closest affinity to Thermus thermophilus HB8T (99.5 %) followed by Thermus arciformis (96.4 %). A comparative analysis of partial sequences of housekeeping genes (HKG) further revealed that strain RLT is a novel species belonging to the genus Thermus. The melting G+C content of strain RLT was calculated as 68.7 mol%. The DNA–DNA relatedness value of strain RLT with its nearest neighbours (>97 %) was found to be less than 70 % indicating that strain RLT represents a novel species of the genus Thermus. MK-8 was the predominant respiratory quinone. The presence of characteristic phospholipid and glycolipid further confirmed that strain RLT belongs to the genus Thermus. The predominant fatty acids of strain RLT were iso-C17:0 (23.67 %) and iso-C15:0 (24.50 %). The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished strain RLT from its closely related species. Thus, strain RLT represents a novel species of the genus Thermus for which the name Thermus parvatiensis is proposed (=DSM 21745T= MTCC 8932T).

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0538-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

15.
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.  相似文献   

16.
Previously, a di-D-fructofuranose 1,2’:2,3’ dianhydride (DFA III)-producing strain, Arthrobacter aurescens SK8.001, was isolated from soil, and the gene cloning and characterization of the DFA III-forming enzyme was studied. In this study, a DFA III hydrolysis enzyme (DFA IIIase)-encoding gene was obtained from the same strain, and the DFA IIIase gene was cloned and expressed in Escherichia coli. The SDS-PAGE and gel filtration results indicated that the purified enzyme was a homotrimer holoenzyme of 145 kDa composed of subunits of 49 kDa. The enzyme displayed the highest catalytic activity for DFA III at pH 5.5 and 55°C, with specific activity of 232 U mg-1. K m and V max for DFA III were 30.7 ± 4.3 mM and 1.2 ± 0.1 mM min-1, respectively. Interestingly, DFA III-forming enzymes and DFA IIIases are highly homologous in amino acid sequence. The molecular modeling and docking of DFA IIIase were first studied, using DFA III-forming enzyme from Bacillus sp. snu-7 as a template. It was suggested that A. aurescens DFA IIIase shared a similar three-dimensional structure with the reported DFA III-forming enzyme from Bacillus sp. snu-7. Furthermore, their catalytic sites may occupy the same position on the proteins. Based on molecular docking analysis and site-directed mutagenesis, it was shown that D207 and E218 were two potential critical residues for the catalysis of A. aurescens DFA IIIase.  相似文献   

17.
Proton (H+) conductive pathways are suggested to play roles in the regulation of intracellular pH. We characterized temperature-sensitive whole cell currents in mouse bone marrow–derived mast cells (BMMC), immature proliferating mast cells generated by in vitro culture. Heating from 24 to 36°C reversibly and repeatedly activated a voltage-dependent outward conductance with Q10 of 9.9 ± 3.1 (mean ± SD) (n = 6). Either a decrease in intracellular pH or an increase in extracellular pH enhanced the amplitude and shifted the activation voltage to more negative potentials. With acidic intracellular solutions (pH 5.5), the outward current was detected in some cells at 24°C and Q10 was 6.0 ± 2.6 (n = 9). The reversal potential was unaffected by changes in concentrations of major ionic constituents (K+, Cl, and Na+), but depended on the pH gradient, suggesting that H+ (equivalents) is a major ion species carrying the current. The H+ current was featured by slow activation kinetics upon membrane depolarization, and the activation time course was accelerated by increases in depolarization, elevating temperature and extracellular alkalization. The current was recorded even when ATP was removed from the intracellular solution, but the mean amplitude was smaller than that in the presence of ATP. The H+ current was reversibly inhibited by Zn2+ but not by bafilomycin A1, an inhibitor for a vacuolar type H+-ATPase. Macroscopic measurements of pH using a fluorescent dye (BCECF) revealed that a rapid recovery of intracellular pH from acid-load was attenuated by lowering temperature, addition of Zn2+, and depletion of extracellular K+, but not by bafilomycin A1. These results suggest that the H+ conductive pathway contributes to intracellular pH homeostasis of BMMC and that the high activation energy may be involved in enhancement of the H+ conductance.  相似文献   

18.
Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5′-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5′-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg2+, Ca2+, or Mn2+. However, Zn2+ inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5′-nucleotidase activity and immune evasion properties.  相似文献   

19.
In this study, 341 Bacillus sp. strains were isolated from agricultural soils of Turkey. The potent extracellular lipase producer was selected. It was identified by 16S rRNA, named as Bacillus cereus ATA179. Optimal nutritional and physical parameters for lipase production were determined. Sucrose as the carbon source, (NH4)2HPO4 as the nitrogen source, CaCl2 as the metal ion were obtained. The best results of physical parameters were stated at 45°C, pH 7.0, shaking rate 50 rpm, inoculation amount 7% and inoculum age 24 h. ATA179 strain showed a 51% increase in enzyme production in the modified medium created by optimizing nutritional and physical conditions. Optimum pH value and temperature were found as 6.0 and 55 °C, respectively. CaCl2, Tween 20, Triton X-100 had an activating effect on enzyme activity. Vmax and Km kinetic values were found as 18.28 U/mL and 0.11 mM, respectively. The molecular weight was determined as 47 kDa. Lipase was found to be stable up to 75 days at -20 ºC. The potential of the enzyme in detergent industry was also investigated. It was not affected by detergent additives, but was found to be effective in removing oils from contaminated fabrics. This new lipase may have potential to be used in detergent industry.  相似文献   

20.
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, σB, which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and ΔsigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the ΔsigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both ΔsigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is σB independent. σB-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional σB reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. σB does not appear to contribute to pHi homeostasis through regulation of net proton movement across the cell membrane or by regulation of pHi buffering by the GAD system under the conditions examined in this study. In summary, a functional σB protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号