首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
“Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.  相似文献   

3.
Marine mammals are often cited as “sentinels of ocean health” yet accessible, synthesized data on their health changes that could effectively warn of ocean health changes are rare. The objectives of this study were to 1) perform a systematic review of published cases of marine mammal disease to determine spatial and temporal trends in disease from 1972–2012, including changes in regions and taxa affected and specific causes; and 2) compare numbers of published cases of neoplasia with known, hospital-based neoplasia records to explore the causes of discrepancy between numbers of published cases and true disease trends. Peer-reviewed literature was compiled, and data were collected from The Marine Mammal Center database in Sausalito, California for comparison of numbers of neoplasia cases. Toxicoses from harmful algal blooms appear to be increasing. Viral epidemics are most common along the Atlantic U.S. coastline, while bacterial epidemics, especially leptospirosis, are most common along the Pacific coast. Certain protozoal and fungal zoonoses appear to be emerging, such as Toxoplasma gondii in southern sea otters in California, and Cryptococcus gattii in cetaceans in the Pacific Northwest. Disease reports were most common from California where pinniped populations are large, but increased effort also occurs. Anthropogenic trauma remains a large threat to marine mammal health, through direct mortality and indirect chronic disease. Neoplasia cases were under-reported from 2003–2012 when compared to true number of cases, and over-reported in several years due to case duplication. Peer-reviewed literature greatly underestimates the true magnitude of disease in marine mammals as it focuses on novel findings, fails to reflect etiology of multifactorial diseases, rarely reports prevalence rather than simple numbers of cases, and is typically presented years after a disease first occurs. Thus literature cannot guide management actions adequately, nor inform indices of ocean health. A real-time, nationally centralized system for reporting marine mammal disease data is needed to be able to understand how marine mammal diseases are changing with ecosystem changes, and before these animals can truly be considered ‘sentinels of ocean health’.  相似文献   

4.
Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2 adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2 adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.  相似文献   

5.
Although glucocorticoid hormones are considered important physiological regulators for surviving adverse environmental stimuli (stressors), evidence for such a role is sparse and usually extrapolated from glucocorticoid effects under laboratory, short-term and/or non-emergency conditions. Galápagos marine iguanas (Amblyrhynchus cristatus) provide an excellent model for determining the ultimate function of a glucocorticoid response because susceptibility to starvation induced by El Niño conditions is essentially their only major natural stressor. In a prospective study, we captured 98 adult male marine iguanas and assessed four major components of their glucocorticoid response: baseline corticosterone titres; corticosterone responses to acute stressors (capture and handling); the maximal capacity to secrete corticosterone (via adrenocorticotropin injection); and the ability to terminate corticosterone responses (negative feedback). Several months after collecting initial measurements, weak El Niño conditions affected the Galápagos and 23 iguanas died. The dead iguanas were typified by a reduced efficacy of negative feedback (i.e. poorer post-stress suppression of corticosterone release) compared with surviving iguanas. We found no prior differences between dead and alive iguanas in baseline corticosterone concentrations, responses to acute stressors, nor in capacity to respond. These data suggest that a greater ability to terminate a stress response conferred a survival advantage during starvation.  相似文献   

6.
The exploitation of non-invasive samples has been widely used in genetic monitoring of terrestrial species. In aquatic ecosystems, non-invasive samples such as feces, shed hair or skin, are less accessible. However, the use of environmental DNA (eDNA) has recently been shown to be an effective tool for genetic monitoring of species presence in freshwater ecosystems. Detecting species in the marine environment using eDNA potentially offers a greater challenge due to the greater dilution, amount of mixing and salinity compared with most freshwater ecosystems. To determine the potential use of eDNA for genetic monitoring we used specific primers that amplify short mitochondrial DNA sequences to detect the presence of a marine mammal, the harbor porpoise, Phocoena phocoena, in a controlled environment and in natural marine locations. The reliability of the genetic detections was investigated by comparing with detections of harbor porpoise echolocation clicks by static acoustic monitoring devices. While we were able to consistently genetically detect the target species under controlled conditions, the results from natural locations were less consistent and detection by eDNA was less successful than acoustic detections. However, at one site we detected long-finned pilot whale, Globicephala melas, a species rarely sighted in the Baltic. Therefore, with optimization aimed towards processing larger volumes of seawater this method has the potential to compliment current visual and acoustic methods of species detection of marine mammals.  相似文献   

7.
Aim The global species richness patterns of birds and mammals are strongly congruent. This could reflect similar evolutionary responses to the Earth’s history, shared responses to current climatic conditions, or both. We compare the geographical and phylogenetic structures of both richness gradients to evaluate these possibilities. Location Global. Methods Gridded bird and mammal distribution databases were used to compare their species richness gradients with the current environment. Phylogenetic trees (resolved to family for birds and to species for mammals) were used to examine underlying phylogenetic structures. Our first prediction is that both groups have responded to the same climatic gradients. Our phylogenetic predictions include: (1) that both groups have similar geographical patterns of mean root distance, a measure of the level of the evolutionary development of faunas, and, more directly, (2) that richness patterns of basal and derived clades will differ, with richness peaking in the tropics for basal clades and in the extra‐tropics for derived clades, and that this difference will hold for both birds and mammals. We also explore whether alternative taxonomic treatments for mammals can generate patterns matching those of birds. Results Both richness gradients are associated with the same current environmental gradients. In contrast, neither of our evolutionary predictions is met: the gradients have different phylogenetic structures, and the richness of birds in the lowland tropics is dominated by many basal species from many basal groups, whereas mammal richness is attributable to many species from both few basal groups and many derived groups. Phylogenetic incongruence is robust to taxonomic delineations for mammals. Main conclusions Contemporary climate can force multiple groups into similar diversity patterns even when evolutionary trajectories differ. Thus, as widely appreciated, our understanding of biodiversity must consider responses to both past and present climates, and our results are consistent with predictions that future climate change will cause major, correlated changes in patterns of diversity across multiple groups irrespective of their evolutionary histories.  相似文献   

8.
As climate regimes shift in many ecosystems worldwide, evolution may be a critical process allowing persistence in rapidly changing environments. Organisms regularly interact with other species, yet whether climate-mediated evolution can occur in the context of species interactions is not well understood. We tested whether a species interaction could modify evolutionary responses to temperature. We demonstrate that predation pressure by Dipteran larvae (Chaoborus americanus) modified the evolutionary response of a freshwater crustacean (Daphnia pulex) to its thermal environment over approximately seven generations in laboratory conditions. Daphnia kept at 21°C evolved higher population growth rates than those kept at 18°C, but only in those populations that were also reared with predators. Furthermore, predator-mediated selection resulted in the evolution of elevated Daphnia thermal plasticity. This laboratory natural selection experiment demonstrates that biotic interactions can modify evolutionary adaptation to temperature. Understanding the interplay between multiple selective forces can improve predictions of ecological and evolutionary responses of organisms to rapid environmental change.  相似文献   

9.
Marine mammals are important sources of food for indigenous residents of northern Alaska. Changing sea ice patterns affect the animals themselves as well as access to them by hunters. Documenting the traditional knowledge of Iñupiaq and Yupik hunters concerning marine mammals and sea ice makes accessible a wide range of information relevant to understanding the ecosystem to which humans belong. We interviewed hunters in 11 coastal villages from the northern Bering Sea to the Beaufort Sea. Hunters reported extensive changes in sea ice and weather that have affected the timing of marine mammal migrations, their distribution and behaviour and the efficacy of certain hunting methods. Amidst these changes, however, hunters cited offsetting technological benefits, such as more powerful and fuel-efficient outboard engines. Other concerns included potential impacts to subsistence hunting from industrial activity such as shipping and oil and gas development. While hunters have been able to adjust to some changes, continued environmental changes and increased disturbance from human activity may further challenge their ability to acquire food in the future. There are indications, however, that innovation and flexibility provide sources of resilience.  相似文献   

10.

Background

Senescence has been widely detected among mammals, but its importance to fitness in wild populations remains controversial. According to evolutionary theories, senescence occurs at an age when selection is relatively weak, which in mammals can be predicted by adult survival rates. However, a recent analysis of senescence rates found more age-dependent mortalities in natural populations of longer lived mammal species. This has important implications to ageing research and for understanding the ecological relevance of senescence, yet so far these have not been widely appreciated. We re-address this question by comparing the mean and maximum life span of 125 mammal species. Specifically, we test the hypothesis that senescence occurs at a younger age relative to the mean natural life span in longer lived species.

Methodology/Principal Findings

We show, using phylogenetically-informed generalised least squares models, a significant log-log relationship between mean life span, as calculated from estimates of adult survival for natural populations, and maximum recorded life span among mammals (R2 = 0.57, p<0.0001). This provides further support for a key prediction of evolutionary theories of ageing. The slope of this relationship (0.353±0.052 s.e.m.), however, indicated that mammals with higher survival rates have a mean life span representing a greater fraction of their potential maximum life span: the ratio of maximum to mean life span decreased significantly from >10 in short-lived to ∼1.5 in long-lived mammal species.

Conclusions/Significance

We interpret the ratio of maximum to mean life span to be an index of the likelihood an individual will experience senescence, which largely determines maximum life span. Our results suggest that senescence occurs at an earlier age relative to the mean life span, and therefore is experienced by more individuals and remains under selection pressure, in long- compared to short-lived mammals. A minimum rate of somatic degradation may ultimately limit the natural life span of mammals. Our results also indicate that senescence and modulating factors like oxidative stress are increasingly important to the fitness of longer lived mammals (and vice versa).  相似文献   

11.
Each year, millions of hatchery‐reared sea‐run brown trout Salmo trutta L. (the sea trout) juveniles are released into the natural environment in the Atlantic region. The aim of this work was to investigate the growth responses of sea trout to changing temperature conditions and to compare the growth plasticity between wild and hatchery‐reared fish. Scales were collected from sea trout in a selected river flowing into the southern Baltic Sea. We analyzed the scale increment widths as a proxy of somatic growth and investigated the interannual variabilities and differences in growth between fish groups (wild and hatchery‐reared). We used mixed‐effects Bayesian modeling and ascribed the variances in growth to different sources. Furthermore, we developed indices of interannual (2003–2015) growth variation in the marine and freshwater phases of the life cycle of the fish and analyzed the relationships between trout growth and temperature. Temperature positively affects fish growth, regardless of the origin of the fish. We observed stronger relationships between fish growth and temperature conditions in the marine phase than in the freshwater phase. Additionally, wild sea trout are characterized by stronger responses to temperature variability and higher phenotypic plasticity of growth than those of the hatchery‐reared individuals. Therefore, wild sea trout might be better suited to changing environmental conditions than hatchery‐reared sea trout. This knowledge identifies possible threats in management actions for sea trout with an emphasis on ongoing climate change.  相似文献   

12.
Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.  相似文献   

13.
Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey.  相似文献   

14.
A five-year period (2002–2006) of below-median rainfall followed by a six-year period (2007–2012) of above-median rainfall and seasonal flooding allowed a natural experiment into the effects of runoff on the water quality and subsequent coral community responses in the Whitsunday Islands, Great Barrier Reef (Australia). Satellite-derived water quality estimates of total suspended solids (TSS) and chlorophyll-a (Chl) concentration showed marked seasonal variability that was exaggerated during years with high river discharge. During above-median rainfall years, Chl was aseasonally high for a period of 3 months during the wet season (February–April), while TSS was elevated for four months, extending into the dry season (March–June). Coinciding with these extremes in water quality was a reduction in the abundance and shift in the community composition, of juvenile corals. The incidence of coral disease was at a maximum during the transition from years of below-median to years of above-median river discharge. In contrast to juvenile corals, the cover of larger corals remained stable, although the composition of communities varied along environmental gradients. In combination, these results suggest opportunistic recruitment of corals during periods of relatively low environmental stress with selection for more tolerant species occurring during periods of environmental extremes.  相似文献   

15.
Across their range, mangroves are responding to coastal environmental change. However, separating the influence of human activities from natural events and processes (including that associated with climatic fluctuation) is often difficult. In the Gulf of Carpentaria, northern Australia (Leichhardt, Nicholson, Mornington Inlet, and Flinders River catchments), changes in mangroves are assumed to be the result of natural drivers as human impacts are minimal. By comparing classifications from time series of Landsat sensor data for the period 1987–2014, mangroves were observed to have extended seawards by up to 1.9 km (perpendicular to the coastline), with inland intrusion occurring along many of the rivers and rivulets in the tidal reaches. Seaward expansion was particularly evident near the mouth of the Leichhardt River, and was associated with peaks in river discharge with LiDAR data indicating distinct structural zones developing following each large rainfall and discharge event. However, along the Gulf coast, and particularly within the Mornington Inlet catchment, the expansion was more gradual and linked to inundation and regular sediment supply through freshwater input. Landward expansion along the Mornington Inlet catchment was attributed to the combined effects of sea level rise and prolonged periods of tidal and freshwater inundation on coastal lowlands. The study concluded that increased amounts of rainfall and associated flooding and sea level rise were responsible for recent seaward and landward extension of mangroves in this region.  相似文献   

16.
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.  相似文献   

17.
Marine mammals can be infected with zoonotic pathogens and show clinical signs of disease, or be asymptomatic carriers of such disease agents. While isolated cases of human disease from contact with marine mammals have been reported, no evaluation of the risks associated with marine mammal work has been attempted. Therefore, we designed a survey to estimate the risk of work-related injuries and illnesses in marine mammal workers and volunteers. The 17-question survey asked respondents to describe their contact with marine mammals, injuries sustained, and/or illnesses acquired during their period of marine mammal exposure. Most respondents, 88% (423/483), were researchers and rehabilitators. Of all respondents, 50% (243/483) reported suffering an injury caused by a marine mammal, and 23% (110/483) reported having a skin rash or reaction. Marine mammal work-related illnesses commonly reported included: 'seal finger' (Mycoplasma spp. or Erysipelothrix rhusiopathiae), conjunctivitis, viral dermatitis, bacterial dermatitis, and non-specific contact dermatitis. Although specific diagnoses could not be confirmed by a physician through this study, severe illnesses were reported and included tuberculosis, leptospirosis, brucellosis, and serious sequelae to seal finger. Risk factors associated with increased odds of injury and illness included prolonged and frequent exposure to marine mammals; direct contact with live marine mammals; and contact with tissue, blood, and excretions. Diagnosis of zoonotic disease was often aided by veterinarians; therefore, workers at risk should be encouraged to consult with a marine mammal veterinarian as well as a physician, especially if obtaining a definitive diagnosis for an illness becomes problematic.  相似文献   

18.
Disturbances act as powerful structuring forces on ecosystems. To ask whether environmental microbial communities have capacity to recover after a large disturbance event, we conducted a whole-ecosystem manipulation, during which we imposed an intense disturbance on freshwater microbial communities by artificially mixing a temperate lake during peak summer thermal stratification. We employed environmental sensors and water chemistry analyses to evaluate the physical and chemical responses of the lake, and bar-coded 16S ribosomal RNA gene pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA) to assess the bacterial community responses. The artificial mixing increased mean lake temperature from 14 to 20 °C for seven weeks after mixing ended, and exposed the microorganisms to very different environmental conditions, including increased hypolimnion oxygen and increased epilimnion carbon dioxide concentrations. Though overall ecosystem conditions remained altered (with hypolimnion temperatures elevated from 6 to 20 °C), bacterial communities returned to their pre-manipulation state as some environmental conditions, such as oxygen concentration, recovered. Recovery to pre-disturbance community composition and diversity was observed within 7 (epilimnion) and 11 (hypolimnion) days after mixing. Our results suggest that some microbial communities have capacity to recover after a major disturbance.  相似文献   

19.
Three developments have implications for the future study of marine mammal behavior: 1) The number and affiliation of researchers have increased from a few individuals representing the interests of government or industry to many people conducting studies from a variety of points of view; 2) The interpretation of natural selection's operation on social behavior and life history patterns has shifted from emphasizing group to individual benefits; and 3) The passage of the Marine Mammal Protection Act has committed the United States to manage, research and protect marine mammal populations. Despite negative aspects of each development, the overall effect on marine mammal research will be positive. The combination of these changes and the interaction and collaboration of researchers with diverse orientations will spur new and varied research efforts and lead to a deeper understanding of marine mammals.  相似文献   

20.
Marine mammals have greatly benefitted from a shift from resource exploitation towards conservation. Often lauded as symbols of conservation success, some marine mammal populations have shown remarkable recoveries after severe depletions. Others have remained at low abundance levels, continued to decline, or become extinct or extirpated. Here we provide a quantitative assessment of (1) publicly available population-level abundance data for marine mammals worldwide, (2) abundance trends and recovery status, and (3) historic population decline and recent recovery. We compiled 182 population abundance time series for 47 species and identified major data gaps. In order to compare across the largest possible set of time series with varying data quality, quantity and frequency, we considered an increase in population abundance as evidence of recovery. Using robust log-linear regression over three generations, we were able to classify abundance trends for 92 spatially non-overlapping populations as Significantly Increasing (42%), Significantly Decreasing (10%), Non-Significant Change (28%) and Unknown (20%). Our results were comparable to IUCN classifications for equivalent species. Among different groupings, pinnipeds and other marine mammals (sirenians, polar bears and otters) showed the highest proportion of recovering populations, likely benefiting from relatively fast life histories and nearshore habitats that provided visibility and protective management measures. Recovery was less frequent among cetaceans, but more common in coastal than offshore populations. For marine mammals with available historical abundance estimates (n = 47), larger historical population declines were associated with low or variable recent recoveries so far. Overall, our results show that many formerly depleted marine mammal populations are recovering. However, data-deficient populations and those with decreasing and non-significant trends require attention. In particular, increased study of populations with major data gaps, including offshore small cetaceans, cryptic species, and marine mammals in low latitudes and developing nations, is needed to better understand the status of marine mammal populations worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号