首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
EV71诱导人神经细胞SH-SY5Y自噬的分子机制   总被引:1,自引:1,他引:0  
【背景】EV71感染所致的重症手足口病易导致神经系统并发症,使患儿预后较差,甚至死亡。【目的】从EV71可诱导神经细胞自噬这一现象出发,探索该病毒诱导神经细胞自噬的miRNA机制,探讨EV71损伤神经细胞可能的分子机制。【方法】通过RT-PCR及Westernblot技术,在感染EV71病毒的人神经母细胞瘤细胞SH-SY5Y中检测细胞自噬变化;通过芯片分析细胞感染前后差异表达的miRNA分子,再使用miRNA mimics调节工具明确与EV71诱导神经细胞自噬有关的miRNA分子。【结果】EV71可诱导SH-SY5Y细胞自噬增加,下调细胞内miRNA29b(miR29b)分子的表达水平;当上调细胞内miR29b的表达后,EV71诱导细胞自噬增加的现象可被逆转,病毒复制水平下降。【结论】EV71诱导神经细胞自噬是通过下调miR29b分子的表达水平实现;miR29b不仅与自噬相关,它与EV71病毒复制也存在密切关系。因此,该研究不仅有助于阐明EV71导致神经系统损伤的具体分子机制,还为miR29b成为治疗EV71感染可能的新药物靶点奠定了理论基础。  相似文献   

3.
4.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   

5.
MicroRNAs (miRNAs) target mRNAs in human cells via complex mechanisms that are still incompletely understood. Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, 'RIP-Chip' experiments enable direct analyses of miRNA targets. RIP-Chip studies (and parallel assessments of total input mRNA) were performed in cultured H4 cells after transfection with miRNAs corresponding to the miR-15/107 gene group (miR-103, miR-107, miR-16 and miR-195), and five control miRNAs. Three biological replicates were run for each condition with a total of 54 separate human Affymetrix Human Gene 1.0 ST array replicates. Computational analyses queried for determinants of miRNA:mRNA binding. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3' portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3'-untranslated region targeting, and stable AGO association versus mRNA knockdown. Future studies should take this important miRNA-to-miRNA variability into account.  相似文献   

6.
The aim of the current study was to compare the expression of microRNAs (miRNAs) in exosomes derived from human bone mesenchymal stem cells (hBMSCs) with and without chondrogenic induction. Exosomes derived from hBMSCs were isolated and identified. Microarray analysis was performed to compare miRNA expression between exosomes derived from hBMSCs with and without chondrogenic induction, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs. hBMSCs were transfected with miRNA mimic to extract miRNA-overexpressed exosomes. The results showed that most exosomes exhibited a cup-shaped or round-shaped morphology with a diameter of approximately 50-200 nm and expressed CD9 and CD63. We detected 141 miRNAs that were differentially expressed with and without chondrogenic induction by over a twofold change, including 35 upregulated miRNAs, such as miR-1246, miR-1290, miR-193a-5p, miR-320c, and miR-92a, and 106 downregulated miRNAs, such as miR-377-3p and miR-6891-5p. qRT-PCR analysis validated these results. Exosomes derived from hBMSCs overexpressing miR-320c were more efficient than normal exosomes derived from control hBMSCs at promoting osteoarthritis chondrocyte proliferation, down-regulated matrix metallopeptidase 13 and up-regulated (sex determining region Y)-box 9 expression during hBMSC chondrogenic differentiation. In conclusion, we identified a group of upregulated miRNAs in exosomes derived from hBMSCs with chondrogenic induction that may play an important role in mesenchymal stem cell-derived exosomes in cartilage regeneration and, ultimately, the treatment of arthritis. We demonstrated the potential of these modified exosomes in the development of novel therapeutic strategies.  相似文献   

7.
8.
9.
10.
Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at characterizing the role of specific miRNAs in MB pathogenesis.  相似文献   

11.
12.
Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species) from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.  相似文献   

13.
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.  相似文献   

14.
A miRNA signature of prion induced neurodegeneration   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion-induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

15.
16.
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression. Though their significance is unclear, pioneer profiling studies have attributed specific serum miRNA signatures to different disease conditions. The diagnostic potential of miRNA detection in human plasma for cardiovascular disorders is beginning to be recognized as important. In this study, we examined miRNA profiling in isolated diastolic dysfunction (DD) with preserved systolic function to identify promising candidate miRNAs. The presence of these miRNAs was tested in stable patients with isolated DD, patients with stable compensated dilated cardiomyopathy (DCM—systolic plus diastolic dysfunction) and those with decompensated congestive heart failure secondary to dilated cardiomyopathy (DCM–CHF—systolic plus diastolic dysfunction). We identified new circulating miRNAs (miR-454, miR-500, miR-1246, miR-142-3p) which showed distinct patterns of expression in patients with diastolic dysfunction. The presence or absence of systolic dysfunction does not seem to affect this trend. MiR-454 and miR-500 are downregulated in diastolic dysfunction. MiR-1246 is upregulated in diastolic dysfunction. MiR-142-3p is downregulated in DCM and DCM–CHF groups but not in the DD group. The expression of miR-124-5p is highly upregulated in DCM but not in DD and DCM–CHF groups. We therefore propose that these circulating miRNAs may serve as novel biomarkers for diastolic dysfunction because in all of these patients the only common factor was diastolic dysfunction.  相似文献   

17.
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that have an important regulatory function in animal growth and developmental processes. However, the differential expression of miRNA and the role of these miRNAs in heat-stressed Holstein cows are still unknown. In this study, the profile of differentially expressed miRNAs and the target genes analysis in the serum of heat-stressed and normal Holstein cows were investigated by a Solexa deep-sequencing approach and bioinformatics. The data identified 52 differentially expressed miRNAs in 486 known miRNAs which were changed significantly between heat-stressed and normal Holstein cows (fold change >2, P < 0.001). Target genes analysis showed that at least 7 miRNAs (miR-19a, miR-19b, miR-146a, miR-30a-5p, miR-345-3p, miR-199a-3p, and miR-1246) were involved in the response to stress, oxidative stress, development of the immune system, and immune response among the identified 52 differentially expressed miRNAs. Five miRNAs (miR-27b, miR-181a, miR-181b, miR-26a, and miR-146b) were involved in stress and immune responses and the expression of five miRNAs was striking (P < 0.001). In addition, RT-qPCR and deep-sequencing methods showed that 8 miRNAs among the 12 selected miRNAs (miR-19a, miR-19b, miR-27b, miR-30a-5p, miR-181a, miR-181b, miR-345-3p, and miR-1246) were highly expressed in the serum of heat-stressed Holstein cows. GO and KEGG pathway analysis showed that these differentially expressed miRNAs were involved in a pathway that may differentially regulate the expression of stress response and immune response genes. Our study provides an overview of miRNAs expression profile and the interaction between miRNAs and their target genes, which will lead to further understanding of the important roles of miRNAs in heat-stressed Holstein cows.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号