首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intricate interactions between viruses and hosts include an evolutionary arms race and adaptation that is facilitated by the ability of RNA viruses to evolve rapidly due to high frequency mutations and genetic RNA recombination. In this paper, we show evidence that the co-opted cellular DDX3-like Ded1 DEAD-box helicase suppresses tombusviral RNA recombination in yeast model host, and the orthologous RH20 helicase functions in a similar way in plants. In vitro replication and recombination assays confirm the direct role of the ATPase function of Ded1p in suppression of viral recombination. We also present data supporting a role for Ded1 in facilitating the switch from minus- to plus-strand synthesis. Interestingly, another co-opted cellular helicase, the eIF4AIII-like AtRH2, enhances TBSV recombination in the absence of Ded1/RH20, suggesting that the coordinated actions of these helicases control viral RNA recombination events. Altogether, these helicases are the first co-opted cellular factors in the viral replicase complex that directly affect viral RNA recombination. Ded1 helicase seems to be a key factor maintaining viral genome integrity by promoting the replication of viral RNAs with correct termini, but inhibiting the replication of defective RNAs lacking correct 5’ end sequences. Altogether, a co-opted cellular DEAD-box helicase facilitates the maintenance of full-length viral genome and suppresses viral recombination, thus limiting the appearance of defective viral RNAs during replication.  相似文献   

2.
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.  相似文献   

3.
4.
DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.  相似文献   

5.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

6.
The segmented double-stranded (ds) RNA genome of the rotaviruses is replicated asymmetrically, with viral mRNA serving as the template for the synthesis of minus-strand RNA. Previous studies with cell-free replication systems have shown that the highly conserved termini of rotavirus gene 8 and 9 mRNAs contain cis-acting signals that promote the synthesis of dsRNA. Based on the location of the cis-acting signals and computer modeling of their secondary structure, the ends of the gene 8 or 9 mRNAs are proposed to interact in cis to form a modified panhandle structure that promotes the synthesis of dsRNA. In this structure, the last 11 to 12 nucleotides of the RNA, including the cis-acting signal that is essential for RNA replication, extend as a single-stranded tail from the panhandled region, and the 5′ untranslated region folds to form a stem-loop motif. To understand the importance of the predicted secondary structure in minus-strand synthesis, mutations were introduced into viral RNAs which affected the 3′ tail and the 5′ stem-loop. Analysis of the RNAs with a cell-free replication system showed that, in contrast to mutations which altered the structure of the 5′ stem-loop, mutations which caused complete or near-complete complementarity between the 5′ end and the 3′ tail significantly inhibited (≥10-fold) minus-strand synthesis. Likewise, incubation of wild-type RNAs with oligonucleotides which were complementary to the 3′ tail inhibited replication. Despite their replication-defective phenotype, mutant RNAs with complementary 5′ and 3′ termini were shown to competitively interfere with the replication of wild-type mRNA and to bind the viral RNA polymerase VP1 as efficiently as wild-type RNA. These results indicate that the single-strand nature of the 3′ end of rotavirus mRNA is essential for efficient dsRNA synthesis and that the specific binding of the RNA polymerase to the mRNA template is required but not sufficient for the synthesis of minus-strand RNA.  相似文献   

7.
8.
Huang TS  Nagy PD 《Journal of virology》2011,85(17):9090-9102
The replication of plus-strand RNA viruses depends on many cellular factors. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant metabolic enzyme that is recruited to the replicase complex of Tomato bushy stunt virus (TBSV) and affects asymmetric viral RNA synthesis. To further our understanding on the role of GAPDH in TBSV replication, we used an in vitro TBSV replication assay based on recombinant p33 and p92(pol) viral replication proteins and cell-free yeast extract. We found that the addition of purified recombinant GAPDH to the cell extract prepared from GAPDH-depleted yeast results in increased plus-strand RNA synthesis and asymmetric production of viral RNAs. Our data also demonstrate that GAPDH interacts with p92(pol) viral replication protein, which may facilitate the recruitment of GAPDH into the viral replicase complex in the yeast model host. In addition, we have identified a dominant negative mutant of GAPDH, which inhibits RNA synthesis and RNA recruitment in vitro. Moreover, this mutant also exhibits strong suppression of tombusvirus accumulation in yeast and in virus-infected Nicotiana benthamiana. Overall, the obtained data support the model that the co-opted GAPDH plays a direct role in TBSV replication by stimulating plus-strand synthesis by the viral replicase.  相似文献   

9.
Here, we show a novel molecular mechanism promoted by the DEAD-box RNA helicase DDX3 for translation of the HIV-1 genomic RNA. This occurs through the adenosine triphosphate-dependent formation of a translation initiation complex that is assembled at the 5′ m7GTP cap of the HIV-1 mRNA. This is due to the property of DDX3 to substitute for the initiation factor eIF4E in the binding of the HIV-1 m7GTP 5′ cap structure where it nucleates the formation of a core DDX3/PABP/eIF4G trimeric complex on the HIV-1 genomic RNA. By using RNA fluorescence in situ hybridization coupled to indirect immunofluorescence, we further show that this viral ribonucleoprotein complex is addressed to compartmentalized cytoplasmic foci where the translation initiation complex is assembled.  相似文献   

10.
The 3′ noncoding region (NCR) of the negative-strand RNA [3′(−)NCR RNA] of the arterivirus simian hemorrhagic fever virus (SHFV) is 209 nucleotides (nt) in length. Since this 3′ region, designated 3′(−)209, is the site of initiation of full-length positive-strand RNA and is the template for the synthesis of the 5′ leader sequence, which is found on both full-length and subgenomic mRNAs, it is likely to contain cis-acting signals for RNA synthesis and to interact with cellular and viral proteins to form replication complexes. Gel mobility shift assays showed that cellular proteins in MA104 S100 cytoplasmic extracts formed two complexes with the SHFV 3′(−)209 RNA, and results from competition gel mobility shift assays demonstrated that these interactions were specific. Four proteins with molecular masses of 103, 86, 55, and 36 kDa were detected in UV-induced cross-linking assays, and three of these proteins (103, 55, and 36 kDa) were also detected by Northwestern blotting assays. Identical gel mobility shift and UV-induced cross-linking patterns were obtained with uninfected and SHFV-infected extracts, indicating that the four proteins detected are cellular, not viral, proteins. The binding sites for the four cellular proteins were mapped to the region between nt 117 and 184 (68-nt sequence) from the 3′ end of the SHFV negative-strand RNA. This 68-nt sequence was predicted to form two stem-loops, SL4 and SL5. The 3′(−)NCR RNA of another arterivirus, lactate dehydrogenase-elevating virus C (LDV-C), competed with the SHFV 3′(−)209 RNA in competition gel mobility shift assays. UV-induced cross-linking assays showed that four MA104 cellular proteins with the same molecular masses as those that bind to the SHFV 3′(−)209 RNA also bind to the LDV-C 3′(−)NCR RNA and equine arteritis virus 3′(−)NCR RNA. However, each of these viral RNAs also bound to an additional MA104 protein. The binding sites for the MA104 cellular proteins were shown to be located in similar positions in the LDV-C 3′(−)NCR and SHFV 3′(−)209 RNAs. These data suggest that the binding sites for a set of the cellular proteins are conserved in all arterivirus RNAs and that these cell proteins may be utilized as components of viral replication complexes.  相似文献   

11.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

12.
13.
The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.  相似文献   

14.
Plus-stranded RNA viruses replicate in membrane-bound structures containing the viral replicase complex (VRC). A key component of the VRC is the virally encoded RNA-dependent RNA polymerase (RdRp), which should be activated and incorporated into the VRC after its translation. To study the activation of the RdRp of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we used N-terminal truncated recombinant RdRp, which supported RNA synthesis in a cell-free yeast extract-based assay. The truncated RdRp required a cis-acting RNA replication element and soluble host factors, while unlike the full-length TBSV RdRp, the truncated RdRp did not need the viral p33 replication cofactor or cellular membranes for RNA synthesis. Interestingly, the truncated RdRp used 3′-terminal extension for initiation and terminated prematurely at an internal cis-acting element. However, the truncated RdRp could perform de novo initiation on a TBSV plus-strand RNA template in the presence of the p33 replication cofactor, cellular membranes, and soluble host proteins. Altogether, the data obtained with the truncated RdRp indicate that this RdRp still requires activation, but with the participation of fewer components than with the full-length RdRp, making it suitable for future studies on dissection of the RdRp activation mechanism.  相似文献   

15.
Recent in vitro proteomics screens revealed that many host proteins could interact with the replication proteins of Tomato bushy stunt virus (TBSV), which is a small, plus-stranded RNA virus (Z. Li, D. Barajas, T. Panavas, D. A. Herbst, and P. D. Nagy, J. Virol. 82:6911-6926, 2008). To further our understanding of the roles of host factors in TBSV replication, we have tested the effect of Rsp5p, which is a member of the Nedd4 family of E3 ubiquitin ligases. The full-length Rsp5p, via its WW domain, is shown to interact with p33 and the central portion of p92pol replication proteins. We find that overexpression of Rsp5p inhibits TBSV replication in Saccharomyces cerevisiae yeast, while downregulation of Rsp5p leads to increased TBSV accumulation. The inhibition is caused by Rsp5p-guided degradation of p92pol, while the negative effect on the p33 level is less pronounced. Interestingly, recombinant Rsp5p also inhibits TBSV RNA replication in a cell-free replication assay, likely due to its ability to bind to p33 and p92pol. We show that the WW domain of Rsp5p, which is involved in protein interactions, is responsible for inhibition of TBSV replication, whereas the HECT domain, involved in protein ubiquitination, is not necessary for Rsp5p-mediated inhibition of viral replication. Overall, our data suggest that direct binding between Rsp5p and p92pol reduces the stability of p92pol, with consequent inhibition of TBSV replicase activity.Various interactions with their host cells are critical for plus-stranded (+)RNA viruses as they attempt to utilize the host translation machinery to produce viral proteins, gain access to the resources of the host cells, co-opt host proteins, and subvert host membranes (1, 17). Additional levels of interaction between virus and host reflect antiviral responses which may involve innate immunity, as well as other antiviral processes and factors. On-going research with several model viruses is striving to map all the interactions between viruses and hosts and characterize the functions of the co-opted host factors. In this regard, recent research has led to the identification of a large number of host proteins which affect the replication of various (+)RNA viruses and minus-stranded RNA viruses (4, 5, 9, 11, 22, 35, 39). The roles and functions of most of the host proteins identified as being involved in RNA virus replication, however, are currently unknown.Tombusviruses, such as Tomato bushy stunt virus (TBSV), are among the most advanced model systems in relation to the identification of host factors affecting (+)RNA virus replication. The TBSV genome codes for only five proteins, two of which are the replication proteins translated directly from the genomic RNA (45). One of these replication proteins is the abundant p33 replication cofactor; the other is the RNA-dependent RNA polymerase (RdRp) p92pol. Due to the overlapping expression strategy, p33 is identical with the N-terminal portion of the larger p92pol protein (Fig. (Fig.1A).1A). Both replication proteins contain an RNA-binding motif (arginine-proline-rich motif), phosphorylation sites that affect RNA binding by the p33 protein, a p33-p33/p92 interaction domain, and two transmembrane domains (Fig. (Fig.1A)1A) (18, 19, 32, 36, 37). Three short stretches of amino acids in p33 and p92pol are involved in binding to the Pex19p host protein that facilitates the transportation of p33 and p92pol from the cytosol to the cytosolic surface of the peroxisomes, the site of replicase complex formation and viral RNA replication (25). The essential nature of the above-named domains for obtaining functional replicase complexes suggests that multiple dynamic protein-protein, protein-RNA, and protein-membrane interactions must be required for robust tombusvirus replication.Open in a separate windowFIG. 1.Binding of Rsp5p to TBSV p33 and p92 proteins in vitro. (A) Schematic representation of viral proteins and their derivatives used in the binding assay. The various domains include the transmembrane domain (TMD), arginine-proline-rich RNA-binding domain (RPR), phosphorylated serine and threonine (P), and S1 and S2 subdomains involved in p33-p33/p92 interaction. The two RNA-binding regions in p92 are shown with boxes. (B) Affinity binding (pulldown) assay to detect interaction between GST-six-His-Rsp5p and the MBP-tagged viral proteins. The MBP-tagged viral proteins and MBP produced in E. coli were immobilized on amylose affinity columns. Then, GST-six-His-tagged Rsp5p expressed in E. coli was passed through the amylose affinity columns with immobilized MBP-tagged proteins. The affinity-bound proteins were specifically eluted with maltose from the columns. The eluted proteins were analyzed by Western blotting with anti-six-His antibody to detect the amount of GST-six-His-Rsp5p specifically bound to MBP-tagged viral proteins. (C) The amounts of MBP-tagged proteins eluted from the columns were analyzed by Coomassie blue staining of SDS-PAGE gels. (D) SDS-PAGE analysis of in vitro ubiquitination of replication protein p33 by purified recombinant Rsp5p. The components in the assays are indicated at the top. The ubiquitin-MBP-p33 product, detected by anti-six-His antibody, is marked by an arrowhead. Ub, ubiquitin; +, present; −, absent.In order to identify host genes involved in tombusvirus replication and recombination, systematic genome-wide screens that covered 95% of the host genes were performed in the model host Saccharomyces cerevisiae yeast (9, 22, 34, 35). These screens led to the identification of over 150 host genes, although the functions of these genes in TBSV replication are largely unknown. In addition, proteomics analysis of the highly purified tombusvirus replicase, as well as the use of yeast protein arrays containing ∼4,100 purified proteins to identify host proteins interacting with p33 and/or p92pol, led to the identification of ∼60 pertinent yeast proteins (12, 33). Current efforts are focused on characterizing the functions of key host proteins in TBSV replication.Most of the host factors identified facilitate tombusvirus replication, though some are inhibitory. The list of characterized host factors includes heat shock protein 70 (Hsp70), which is required for the assembly of the viral replicase in vitro, as well as for membrane insertion and intracellular targeting of the viral replication proteins in vivo (29, 43). Another important host protein is GAPDH (glyceraldehyde-3-phosphate dehydrogenase), which affects plus-strand synthesis (42). The functions of two other host factors that are also present in the replicase complex, namely, Cdc34p E2 ubiquitin-conjugating enzyme, which ubiquitinates p33 replication protein in vitro, and translation elongation factor 1A (eEF1A), which binds to a 3′ cis-acting regulatory element in the TBSV (+)RNA, are not yet characterized with respect to their roles in viral replication (12, 13). Downregulation of all four of the above-described host factors inhibited TBSV accumulation in the yeast model host and in plants (12, 13, 33, 42, 43), suggesting that they are significant players in TBSV replication.In order to further the understanding of host factor roles in viral RNA replication, this paper addresses the effect of Rsp5p E3 ubiquitin ligase on TBSV accumulation. Rsp5p was selected since we have previously found an interaction between p33 and Rsp5p, based on the yeast protein array (12). Also, p33 is mono- and biubiquitinated in yeast cells (12), and Rsp5p is known to ubiquitinate select host proteins (3). These features of Rsp5p suggest its relevance to TBSV replication. Indeed, we found that Rsp5p inhibits TBSV replication when overexpressed in yeast cells, whereas its downregulation leads to increased TBSV accumulation. The inhibition is primarily caused by Rsp5p-mediated selective degradation of p92pol. Its negative effect on the level of p33 is substantially less. However, the inhibitory function of Rsp5p is more complex, since the purified recombinant Rsp5p also inhibited RNA replication in a cell-free TBSV replication assay, likely due to the ability of Rsp5p to bind to both p33 and p92pol. Surprisingly, the inhibitory function of Rsp5p is not caused by the HECT domain, which is involved in protein ubiquitination, but by its WW domain, which is involved in protein interactions. The observations suggest that direct binding between Rsp5p and p33 and, more importantly, p92pol is likely involved in the inhibition of TBSV replication.  相似文献   

16.
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1′s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change.  相似文献   

17.
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for potyvirus infection. Here, we report the identification of two DEAD-box RNA helicase-like proteins, PpDDXL and AtRH8 from peach (Prunus persica) and Arabidopsis (Arabidopsis thaliana), respectively, both interacting with VPg. We show that AtRH8 is dispensable for plant growth and development but necessary for potyvirus infection. In potyvirus-infected Nicotiana benthamiana leaf tissues, AtRH8 colocalizes with the chloroplast-bound virus accumulation vesicles, suggesting a possible role of AtRH8 in viral genome translation and replication. Deletion analyses of AtRH8 have identified the VPg-binding region. Comparison of this region and the corresponding region of PpDDXL suggests that they are highly conserved and share the same secondary structure. Moreover, overexpression of the VPg-binding region from either AtRH8 or PpDDXL suppresses potyvirus accumulation in infected N. benthamiana leaf tissues. Taken together, these data demonstrate that AtRH8, interacting with VPg, is a host factor required for the potyvirus infection process and that both AtRH8 and PpDDXL may be manipulated for the development of genetic resistance against potyvirus infections.Plant viruses are obligate intracellular parasites that infect many agriculturally important crops and cause severe losses each year. One of the common characteristics of plant viruses is their relatively small genome that encodes a limited number of viral proteins, making them dependent on host factors to fulfill their infection cycles (Maule et al., 2002; Whitham and Wang, 2004; Nelson and Citovsky, 2005; Decroocq et al., 2006). In order to establish a successful infection, the invading virus must recruit an array of host proteins (host factors) to translate and replicate its genome and to move locally from cell to cell via the plasmodesmata and systemically via the vascular system. It has been suggested that down-regulation or mutation of some of the required host factors may result in recessively inherited resistance to viruses (Kang et al., 2005b).Potyviruses, belonging to the genus Potyvirus in the family Potyviradae, constitute the largest group of plant viruses (Rajamäki et al., 2004). Potyviruses have a single positive-strand RNA genome approximately 10 kb in length, with a viral genome-linked protein (VPg) covalently attached to the 5′ end and a poly(A) tail at the 3′ end (Urcuqui-Inchima et al., 2001; Rajamäki et al., 2004). The viral genome contains a single open reading frame (ORF) that translates into a polypeptide with a molecular mass of approximately 350 kD, which is cleaved into 10 mature proteins by viral proteases (Urcuqui-Inchima et al., 2001). Recently, a novel viral protein resulting from a frameshift in the P3 cistron has been reported (Chung et al., 2008). Of the 11 viral proteins, VPg is a multifunctional protein and the only other viral protein present in the viral particles (virions) besides the coat protein and the cylindrical inclusion protein (CI; Oruetxebarria et al., 2001; Puustinen et al., 2002; Gabrenaite-Verkhovskaya et al., 2008). The nonstructural protein is linked to the viral RNA by a phosphodiester bond between the 5′ terminal uridine residue of the RNA and the O4-hydroxyl group of amino acid Tyr (Murphy et al., 1996; Oruetxebarria et al., 2001; Puustinen et al., 2002). Mutation of the Tyr residue that links VPg to the viral RNA abolishes virus infectivity completely (Murphy et al., 1996). In infected cells, VPg and its precursor NIa are present in the nucleus and in the membrane-associated virus replication vesicles in the cytoplasm (Carrington et al., 1993; Rajamäki and Valkonen, 2003; Cotton et al., 2009). As a component of the replication complex, VPg may serve as a primer for viral RNA replication (Puustinen and Mäkinen, 2004) and as an analog of the m7G cap of mRNAs for the viral genome to recruit the translation complex for translation (Michon et al., 2006; Beauchemin et al., 2007; Khan et al., 2008). Furthermore, VPg has been suggested to be an avirulence factor for recessive resistance genes in diverse plant species (Moury et al., 2004; Kang et al., 2005b; Bruun-Rasmussen et al., 2007). Thus, VPg plays a pivotal role in the virus infection process. The molecular identification of VPg-interacting host proteins and the subsequent functional characterization of such interactions may advance knowledge of the intricate virus replication mechanisms and help develop novel antiviral strategies.Previous studies have shown that VPg and its precursor NIa interact with several host proteins, including three essential components of the host protein translation apparatus (Thivierge et al., 2008). The first protein is the cellular translation initiation factor eIF4E or its isoform eIF(iso)4E, identified through a yeast two-hybrid screen using VPg as a bait (Wittmann et al., 1997; Schaad et al., 2000). The protein complex of VPg and eIF4E is an essential component for virus infectivity (Robaglia and Caranta, 2006). Mutations and knockout of eIF4E or eIF(iso)4E confer resistance to infection (Lellis et al., 2002; Ruffel et al., 2002; Nicaise et al., 2003; Gao et al., 2004; Kang et al., 2005a; Ruffel et al., 2005; Decroocq et al., 2006; Bruun-Rasmussen et al., 2007). It is well known that potyviruses recruit selectively one of the eIF4E isoforms, depending on specific virus-host combinations (German-Retana et al., 2008). For instance, in Arabidopsis (Arabidopsis thaliana), eIF(iso)4E is required for infection by Turnip mosaic virus (TuMV), Plum pox virus (PPV), and Lettuce mosaic virus, while eIF4E is indispensable for infection by Clover yellow vein virus (Duprat et al., 2002; Lellis et al., 2002; Sato et al., 2005; Decroocq et al., 2006). The second cellular protein interacting with VPg is another translation initiation factor, eIF4G. Analysis of Arabidopsis knockout mutants for eIF4G or its isomers eIF(iso)4G1 and eIF(iso)4G2 has yielded results supporting the idea that the recruitment of eIF4G for potyvirus infection is also isoform dependent (Nicaise et al., 2007). Recently, poly(A)-binding protein (PABP), the translation initiation factor that bridges the 5′ and 3′ termini of the mRNA into proximity, has been proposed to be essential for efficient multiplication of TuMV (Dufresne et al., 2008). PABP was previously documented to interact with NIa, a VPg precursor containing both VPg and the proteinase NIa-Pro (Léonard et al., 2004). As the translation factors eIF(iso)4E and PABP have been found to be internalized in virus-induced vesicles, it has been suggested that the interactions between VPg and these translation factors are crucial for viral RNA translation and/or replication (Beauchemin and Laliberté, 2007; Beauchemin et al., 2007; Cotton et al., 2009). Besides these three translation factors, a Cys-rich plant protein, potyvirus VPg-interaction protein, was also found to associate with VPg (Dunoyer et al., 2004). This plant-specific VPg-interacting host protein contains a PHD finger domain and acts as an ancillary factor to support potyvirus infection and movement (Dunoyer et al., 2004).In this study, we describe the identification of an Arabidopsis DEAD-box RNA helicase (DDX), AtRH8, and a peach (Prunus persica) DDX-like protein, PpDDXL, both interacting with the potyviral VPg protein. Using the atrh8 mutant, we demonstrate that AtRH8 is not required for plant growth and development in Arabidopsis but is necessary for infection by two plant potyviruses, PPV and TuMV. Furthermore, we present evidence that AtRH8 colocalizes with the virus accumulation complex in potyvirus-infected leaf tissues, which reveals a possible role of AtRH8 in virus infection. Finally, we have identified the VPg-binding region (VPg-BR) of AtRH8 and PpDDX and show that overexpression of the VPg-BR either from AtRH8 or PpDDXL suppresses virus accumulation.  相似文献   

18.
Panavas T  Nagy PD 《Journal of virology》2005,79(15):9777-9785
Replication of RNA viruses is regulated by cis-acting RNA elements, including promoters, replication silencers, and replication enhancers (REN). To dissect the function of an REN element involved in plus-strand RNA synthesis, we developed an in vitro trans-replication assay for tombusviruses, which are small plus-strand RNA viruses. In this assay, two RNA strands were tethered together via short complementary regions with the REN present in the nontemplate RNA, whereas the promoter was located in the template RNA. We found that the template activity of the tombusvirus replicase preparation was stimulated in trans by the REN, suggesting that the REN is a functional enhancer when located in the vicinity of the promoter. In addition, this study revealed that the REN has dual function during RNA synthesis. (i) It binds to the viral replicase. (ii) It interacts with the core plus-strand initiation promoter via a long-distance RNA-RNA interaction, which leads to stimulation of initiation of plus-strand RNA synthesis by the replicase in vitro. We also observed that this RNA-RNA interaction increased the in vivo accumulation and competitiveness of defective interfering RNA, a model template. We propose that REN is important for asymmetrical viral RNA replication that leads to more abundant plus-strand RNA progeny than the minus-strand intermediate, a hallmark of replication of plus-strand RNA viruses.  相似文献   

19.
Genomes and antigenomes of many positive-strand RNA viruses contain 3′-poly(A) and 5′-poly(U) tracts, respectively, serving as mutual templates. Mechanism(s) controlling the length of these homopolymeric stretches are not well understood. Here, we show that in coxsackievirus B3 (CVB3) and three other enteroviruses the poly(A) tract is ~80–90 and the poly(U) tract is ~20 nt-long. Mutagenesis analysis indicate that the length of the CVB3 3′-poly(A) is determined by the oriR, a cis-element in the 3′-noncoding region of viral RNA. In contrast, while mutations of the oriR inhibit initiation of (−) RNA synthesis, they do not affect the 5′-poly(U) length. Poly(A)-lacking genomes are able to acquire genetically unstable AU-rich poly(A)-terminated 3′-tails, which may be generated by a mechanism distinct from the cognate viral RNA polyadenylation. The aberrant tails ensure only inefficient replication. The possibility of RNA replication independent of oriR and poly(A) demonstrate that highly debilitated viruses are able to survive by utilizing ‘emergence’, perhaps atavistic, mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号