首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
After over a half century of empirical and theoretical research regarding the evolution and maintenance of gynodioecy in plants, unexplored factors influencing the relative fitnesses of females and hermaphrodites remain. Theoretical studies suggest that hermaphrodite self-fertilization (selfing) rate influences the maintenance of gynodioecy and we hypothesized that population sex ratio may influence hermaphrodite selfing rate. An experimental test for frequency-dependent self-fertilization was conducted using replicated populations constructed with different sex ratios of the gynodioecious plant Silene vulgaris . We found that hermaphrodite selfing increased with decreased hermaphrodite frequency, whereas evidence for increased inbreeding depression was equivocal. We argue that incorporation of context dependent inbreeding into future models of the evolution of gynodioecy is likely to yield novel insights into sex ratio evolution.  相似文献   

2.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

3.
Dufay M  Billard E 《Annals of botany》2012,109(3):505-519

Background

Gynodioecy is a reproductive system of interest for evolutionary biologists, as it poses the question of how females can be maintained while competing with hermaphrodites that possess both male and female functions. One necessary condition for the maintenance of this polymorphism is the occurrence of a female advantage, i.e. a better seed production or quality by females compared with hermaphrodites. Theoretically, its magnitude can be low when sterility mutations are cytoplasmic, while a 2-fold advantage is needed in the case of nuclear sterility. Such a difference is often thought to be due to reduced inbreeding depression in obligatory outcrossed females. Finally, variation in sex ratio and female advantage occur among populations of some gynodioecious species, though the prevalence of such variation is unknown.

Scope

By reviewing and analysing the data published on 48 gynodioecious species, we examined three important issues about female advantage. (1) Are reduced selfing and inbreeding depression likely to be the major cause of female advantage? (2) What is the magnitude of female advantage and does it fit theoretical predictions? (3) Does the occurrence or the magnitude of female advantage vary among populations within species and why?

Conclusions

It was found that a female advantage occurred in 40 species, with a magnitude comprised between 1 and 2 in the majority of cases. In many species, reduced selfing may not be a necessary cause of this advantage. Finally, female advantage varied among populations in some species, but both positive and negative correlations were found with female frequency. The role of reduced selfing in females for the evolution of gynodioecy, as well as the various processes that affect sex ratios and female advantage in populations are discussed.  相似文献   

4.
    
I assessed the relationship between the level of inbreeding, F, and fitness, and the effects of nonmaternal and maternal components of inbreeding on fitness in Phacelia dubia. I conducted two generations of controlled crosses and tested the performance of the F2 progeny in field and artificial conditions covering the whole life cycle. Inbreeding significantly decreased the individual contribution of seeds to the next generation in the field, but this decrease apparently is not enough to explain the maintenance of gynodioecy. The inbred progeny contributes significantly to the population genetic structure of P. dubia. Fitness estimates and fitness components tended to decrease, usually monotonically, with F. However, nonmonotonic relationships were found in male fitness components and, in some families, in fitness estimates, seed production per fruit, and establishment. Most of the inbreeding depression takes place at the level of seed establishment in the field, but, in artificial conditions the effects of inbreeding were similar at fecundity and establishment. I studied maternal and nonmaternal components of inbreeding by testing the effects of the relatedness of maternal grandparents and parents on the performance of the progeny. Both components affected fitness. Inbreeding depression was conditioned by the level of inbreeding of the maternal plant, but this interaction varied at different fitness components. Also, the magnitude and even the direction of the relationship between fitness and F changed as a result of the combined effects of maternal and nonmaternal components of inbreeding. Such interactions can render convex or concave fitness functions, giving in the latter case the appearance of a false purging. Maternal effects of inbreeding can result from several processes: maternal investment perhaps with serial adjustments during seed development, purging of recessive deleterious genes, and nucleocytoplasmic interactions. These results illustrate the importance of maternal effects of inbreeding, and the complex effects of inbreeding on fitness. A full understanding of the fitness consequences of inbreeding and, therefore, their potential implications in the evolution of breeding systems, should take into account male and female components as well as transgenerational effects in the context of the particular environment in which fitness is evaluated.  相似文献   

5.
    
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

6.
控制转基因植物中基因逃逸的分子策略   总被引:6,自引:0,他引:6  
钱海丰  陈哲皓  傅杰 《生命科学》2004,16(5):288-291,332
转基因作物释放可能导致潜在的生态风险性,其中一个重要方面是通过花粉传播,将外源基因(如抗除草剂、抗虫基因)转入野生近缘种或近缘杂草而产生难以控制的“超级杂草”。本文讨论了防止外源基因逃逸的几种分子技术手段,主要包括:(1)母系遗传法(又称细胞质遗传法);(2)雄性不育法:(3)种子不育法;(4)染色体组特异性选择法等。  相似文献   

7.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

8.
9.
    
The deleterious effects of inbreeding can be substantial in wild populations and mechanisms to avoid such matings have evolved in many organisms. In situations where social mate choice is restricted, extrapair paternity may be a strategy used by females to avoid inbreeding and increase offspring heterozygosity. In the cooperatively breeding Seychelles warbler, Acrocephalus sechellensis, neither social nor extrapair mate choice was used to avoid inbreeding facultatively, and close inbreeding occurred in approximately 5% of matings. However, a higher frequency of extra-group paternity may be selected for in female subordinates because this did reduce the frequency of mating between close relatives. Inbreeding resulted in reduced individual heterozygosity, which, against expectation, had an almost significant (P = 0.052), positive effect on survival. Conversely, low heterozygosity in the genetic mother was linked to reduced offspring survival, and the magnitude of this intergenerational inbreeding depression effect was environment-dependent. Because we controlled for genetic effects and most environmental effects (through the experimental cross-fostering of nestlings), we conclude that the reduced survival was a result of maternal effects. Our results show that inbreeding can have complicated effects even within a genetic bottlenecked population where the \"purging\" of recessive alleles is expected to reduce the effects of inbreeding depression.  相似文献   

10.
Mating system of Bracon hebetor (Hymenoptera: Braconidae)   总被引:1,自引:0,他引:1  
Abstract.
  • 1 We report on the mating system of a field population of the parasitic wasp, Bracon hebetor, on a corn pile infested by the Indian meal moth, Plodia interpunctella. We demonstrate that the mating system is based upon male scramble competition polygyny with male aggregations on high places on the corn.
  • 2 The sex ratio among adults was greater than 80% males on the surface of the corn, whereas below the surface the sex ratio was less than 45%. Males actively courted females on the surface, but there were no aggressive interactions among males during courtship or mating.
  • 3 Approximately 20% of the females found on the surface of the corn had no sperm in their spermathecae, regardless of age, but the numbers of unmated females decreased later during the day.
  • 4 In laboratory studies we showed that females from this population oviposit a female biassed sex ratio, and that only 14% of females were mated before dispersing from their place of emergence.
  • 5 Thus sib-mating is unlikely in this gregarious parasitoid. This outcrossing mating system probably arose because of severe inbreeding depression that B.hebetor suffers via a sex locus: diploids that are heterozygous at the sex locus develop into females, but homozygous diploids are male and are generally inviable. The female biassed sex ratio may have evolved in B. hebetor in response to males being the more expensive sex, females dispersing more frequently from the population than males, or a fraction of females remaining unmated in the population.
  相似文献   

11.
We tested the fertilization efficiency hypothesis, which attempts to explain mean seed size variation among plants within single populations, by comparing the patterns of seed size variation between chasmogamous (CH) flowers and cleistogamous (CL) flowers in Impatiens noli-tangere and Viola grypoceras, respectively. The fertilization efficiency hypothesis predicts that larger plants produce larger seeds if the number of pollen grains captured by a plant increases with increased allocation of resources to its attractive structures (e.g., corolla and nectar), but with diminishing gains. Thus, seed size should depend on plant size in seeds from CH flowers because of the diminishing gains of capturing pollen in these flowers, whereas seed size should not depend on plant size in seeds from CL flowers because CL flowers need not capture outcross pollen. We found significant positive correlations between mean seed size per plant and plant size for seeds from CH flowers in both species. However, there was no significant positive correlation between these two factors for seeds from CL flowers of both species. The results of the present investigations were thus consistent with the fertilization efficiency hypothesis.  相似文献   

12.
    
Henschel  J. R.  Lubin  Y. D.  Schneider  J. 《Insectes Sociaux》1995,42(4):419-426
Summary Sexual competition is shown to occur in the social spiderStegodyphus dumicola (Eresidae). While the secondary sex ratio inS. dumicola was female-biased, the overall operational sex ratio (numbers of breeding males to breeding females over the season) showed no strong female bias. Males matured before females and had a shorter lifespan than the females. Mating took place in the natal colony. Males fought over access to the few mature females available early in the reproductive season, but females appeared to control the duration of mating. Later in the season, some adults of both sexes dispersed alone to breed elsewhere. We conclude that different rates of maturation between the sexes within a colony provide the opportunity for females that mature early in the season to be choosy in selecting a mate and this forces males to compete. Early reproduction may be beneficial for both females and males, because the offspring of females that reproduce early may have a competitive advantage over later (and smaller) offspring in the colony.  相似文献   

13.
    
Gynodioecy, the co‐occurrence of females and hermaphrodites, is arguably the most common angiosperm gender polymorphism in many florae. Females’ ability to invade and persist among hermaphrodites depends, in part, on pollinators providing adequate pollination to females. We directly measured diurnal and nocturnal pollinators’ contributions to female and hermaphrodite seed production in artificial populations of gynodioecious Silene vulgaris by experimentally restricting pollinator access. We found that female relative seed production in this system depended strongly on pollination context: females produced more than twice as many seeds as hermaphrodites in the context of abundant, nectar‐collecting moths. Conversely, females showed no seed production advantage in the context of pollen‐collecting syrphid flies and bees due to acutely hermaphrodite‐biased visitation. We infer that variation in pollinator type, behaviour and abundance may be important for achieving the female relative fitness thresholds necessary for the maintenance of gynodioecy. Generally, our study illustrates how pollinator‐mediated mechanisms may influence the evolution of breeding systems and associated suites of floral traits. Segments of a pollinator community may facilitate gynodioecy by selecting for plant characteristics that increase the attractiveness of both sexes to pollinators, such as nectar rewards. Conversely, discriminating visitors in search of pollen may restrict gynodioecy in associated plant lineages by reducing male steriles’ fitness below threshold levels.  相似文献   

14.
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species.  相似文献   

15.
    
Knowledge about mixed mating systems can improve our understanding of the evolutionary dynamics of reproductive systems. Here we report a study of the floral and reproductive biology of Hypericum elodes, an Atlantic-European soft-water pools specialist which shows a floral architecture consistent with both self- and cross-pollination. Controlled pollination experiments were performed in a natural population during three consecutive years. Marked flowers were monitored until fruit production, and laboratory germination experiments were conducted with the seeds produced. Plants were self-compatible (SCI>0.75), however, compared with selfing, cross-pollination enhanced fruit-set, seed-set and seedling growth, but not seed germination. Inbreeding depression (δ) was mild in the pre-dispersal stages (δ = 0.22 for fruit set, 0.18 for seed set and 0.13 for seed mass), low for germination percentage (δ = 0.003) and mild for seedling growth (δ = 0.23). The breeding system of H. elodes promotes outcrossing and assures reproductive success by means of competitive autogamy. Our results suggest a mixed mating strategy for the studied population, characterized by mild inbreeding depression (cumulative δ = 0.57), highlighting the benefit of this reproductive mode in unpredictable habitat, as the typical shallow-water meadows where H. elodes grows.  相似文献   

16.
M Ferriol  C Pichot  F Lefèvre 《Heredity》2011,106(1):146-157
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load.  相似文献   

17.
    
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.  相似文献   

18.
In the evolution of sexual reproduction we would expect to see a close association between mating systems and sex determination mechanisms. Such associations are especially evident in the insect order Hymenoptera which shows great diversity with respect to both of these characteristics. The ancestral sex determination mechanism in this order is thought to be single‐locus complementary sex determination (sl‐CSD), which is inbreeding sensitive, and where inbreeding results in the production of sterile diploid males rather than daughters. Presently, however, there is insufficient data to give strong support to the hypothesis that sl‐CSD is truly the ancestral condition in the Hymenoptera, principally because of the difficulty of reliably determining the degree of male ploidy. Here we show that six ichneumonid parasitoids from the polyphyletic genus Diadegma are subject to sl‐CSD, using neuronal cell DNA flow cytometry to distinguish ploidy levels. The presence of sl‐CSD in these six species, together with earlier evidence from the authors for D. chrysostictos, provides considerable support for the notion that sl‐CSD was ancestral in the Aculeata/Ichneumonoidea clade, which contains all eusocial Hymenoptera. Moreover, because flow cytometry discriminates reliably between haploid and diploid males, and is independent of the maternal sex allocation or the need for genetic markers, it has considerable potential for the determination of ploidy more generally.  相似文献   

19.
Suaeda aegyptiaca is a facultative halophyte found in saline and non‐saline habitats of the Arab Gulf desert, which produces small‐sized undispersible seeds. The interactive effects of maternal salinity and other environmental conditions, such as salinity, light and temperatures, that are prevailing during seed germination have received little attention for a facultative halophyte. This study tested the effects of maternal salinity on salt tolerance during seed germination of S. aegyptiaca under different light and temperature regimes. Seeds collected from both saline and non‐saline habitats of the United Arab Emirates (UAE) were germinated in 0, 50, 100, 200 and 400 mM NaCl, and incubated at 15/25°C, 20/30°C and 25/35°C in both 12‐h light/12‐h dark regimes and continuous darkness. Generally, seeds of the non‐saline habitat were 56% heavier and attained greater germination at the lower temperatures than seeds of the saline habitat. Seeds of the saline habitat germinated better in saline solutions at higher temperatures and in light. Germination was faster for seeds of the saline habitat than for seeds of non‐saline habitats. Germination recovery after transfer to distilled water was significantly greater for seeds from the non‐saline habitat, compared with seeds from saline habitats. Recovery was greater at lower and/or moderate temperatures, compared with at higher temperatures. Germination was significantly faster during recovery, compared with in the saline solutions. The study indicates that the maternal effect of salinity was confounded with the seed‐size effect and it cannot be conclusively confirmed.  相似文献   

20.
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号