首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
2.
3.
4.
5.
6.
Huang S  Zeng H  Zhang J  Wei S  Huang L 《Phytochemistry》2011,72(17):2124-2129
There are six different vitamin B6 (VB6) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP), and pyridoxine 5′-phosphate (PNP), of which PLP is the active form. Although plants are a major source of VB6 in the human diet, and VB6 plays an important role in plants, the mechanisms underlying the interconversions of different VB6 forms are not well understood. In this study, in vitro tobacco plants were grown on Murashige and Skoog (MS) basal media supplemented with 100 mg/L of PM, PL or PN and the abundance of the different B6 vitamers in leaf tissue was quantified by high performance liquid chromatography (HPLC). The total amount of VB6 was about 3.9 μg/g fresh weight of which PL, PM, PN, PLP and PMP accounted for 23%, 14%, 37%, 20% and 6%, respectively. Tobacco plants contained a trace amount of PNP. Supplementation of the culture medium with any of the non-phosphorylated vitamers resulted in an increase in total VB6 by about 10-fold, but had very little impact on the concentrations of the endogenous phosphorylated vitamers. Administration of either PM or PN increased their endogenous levels more than the levels of any other endogenous B6 vitamers. PL supplementation increased the levels of plant PN and PM significantly, but not that of PL, suggesting that efficient conversion pathways from PL to PN and PM are present in tobacco. Additionally, maintenance of a stable level of PLP in the plant is not well-correlated to changes in levels of non-phosphorylated forms.  相似文献   

7.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Dehydroaltenusin was found to be an inhibitor of mammalian DNA polymerase alpha (pol alpha) in vitro. Surprisingly, among the polymerases and DNA metabolic enzymes tested, dehydroaltenusin inhibited only mammalian pol alpha. Dehydroaltenusin did not influence the activities of the other replicative DNA polymerases, such as delta and epsilon; it also showed no effect even on the pol alpha activity from another vertebrate (fish) or plant species. The inhibitory effect of dehydroaltenusin on mammalian pol alpha was dose-dependent, and 50% inhibition was observed at a concentration of 0.5 microm. Dehydroaltenusin-induced inhibition of mammalian pol alpha activity was competitive with the template-primer and non-competitive with the dNTP substrate. BIAcore analysis demonstrated that dehydroaltenusin bound to the core domain of the largest subunit, p180, of mouse pol alpha, which has catalytic activity, but did not bind to the smallest subunit or the DNA primase p46 of mouse pol alpha. These results suggest that the dehydroaltenusin molecule competes with the template-primer molecule on its binding site of the catalytic domain of mammalian pol alpha, binds to the site, and simultaneously disturbs dNTP substrate incorporation into the template-primer.  相似文献   

9.
10.
We previously found and isolated a novel natural product, designated kohamaic acid A (KA-A), which inhibited the first cleavage of fertilized sea urchin eggs. In this paper, we report that this compound could selectively inhibit the activities of DNA polymerases (pol. alpha, beta, gamma, delta and epsilon ) only from species in the deuterostome branch in the animal kingdom, like sea urchin, fish and mammals, but not from protostomes including insects (fruit fly, Drosophila melanogaster) and mollusks (octopus and oyster). Inhibition of deuterostome DNA polymerases was dose dependent. IC(50) values for DNA polymerases of mammals and fish occurred at approximately 5.8-14.9 microM and those of sea urchin at 6.1-30.3 microM. In the sea urchin DNA polymerases, the activities of the replicative DNA polymerases such as alpha, delta and epsilon were more strongly inhibited than that of the repair-related pol. beta. KA-A is an inhibitor of replicative DNA polymerases from the deuterostome species, and subsequently, the inhibition of the first cleavage of fertilized sea urchin eggs might occur as a result of the suppression of DNA replication.  相似文献   

11.
12.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

13.
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation.The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases.We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.  相似文献   

14.
There are six different vitamin B6 (VB6) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP) and pyridoxine 5′-phosphate (PNP). PLP is a coenzyme required by more than 100 cellular enzymes. In spite of the importance of this vitamin, the understanding of VB6 metabolic conversion in plants is limited. In this study, we developed a sensitive and reliable method to assay VB6-metabolizing enzyme activities by monitoring their products visually using high-performance liquid chromatography. With this method, the reactions catalyzed by PL/PM/PN kinase, PMP/PNP oxidase, PM-pyruvate aminotransferase, PL reductase and PLP phosphatase were all nicely detected using crude protein extracts of tobacco leaves. Under optimal in vitro conditions, specific activities of those enzymes were 0.15 ± 0.03, 0.10 ± 0.03, 0.08 ± 0.02, 0.64 ± 0.13 and 23.08 ± 1.98 nmol product/min/mg protein, respectively. This is the first report on the conversion between PM and PL catalyzed by PM-pyruvate aminotransferase in plants. Furthermore, the PL reductase activity was found to be heat inducible. Our study sheds light on the VB6 metabolism taking place in plants.  相似文献   

15.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

16.
Marginal deficiency of vitamin B6 has recently been related to cardiovascular diseases. Because of that there is an increasing interest in a suitable and reliable method for quantifying this vitamin in routine laboratory medicine. We have developed a HPLC-based method able to quantify the B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine 5'-phosphate (PMP), pyridoxine (PN), and pyridoxamine (PM) and the degradation product 4-pyridoxic acid (4-PA). The separation was accomplished using a C18 (ODS) analytical column and an ion-pair reversed-phase chromatography. B6 vitamers were eluted with a gradient of acetonitrile (0.5-15%) in a potassium phosphate buffer with 1-octanesulfonic acid and triethylamine, pH 2.16. The concentration of the vitamers was determined with fluorescence detector (328 nm excitation, 393 nm emission) after postcolumn derivatization with phosphate buffer containing 1 g/L sodium bisulfite. The performance of the assay was evaluated by analyzing six plasma samples with interrelated concentration and two control samples (unspiked and vitamer spiked) over a 3-months period. The HPLC method was able to identify PLP, 4-PA, PM, PL, PN, and PMP from all other compounds in plasma in an analytical run of 46 min. The imprecisions and mean values (presented in parenthesis in nmol/L) were (unspiked and spiked sample) 9-8% (41-65) for PLP, 12-7% (18-40) for 4-PA, 67-28% (4-19) for PL, 15% (21) for PN, 10% (27) for PM, and 27% (17) for PMP. All three B6 vitamers (PLP, 4-PA, and PL) present in unspiked plasma showed an excellent linearity within the range of (nM) 8-60 (4-PA), 1-19 (PL), and 11-99 (PLP). In conclusion, we report a HPLC-based method that separates and detects nanomolar quantities of six B6 vitamers and demonstrate that the method will be suitable for routine quantitation of PLP and 4-PA in human plasma.  相似文献   

17.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

18.
In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol alpha from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol alpha with IC50 value of 0.5 microM, and did not influence the activities of other replicative pols such as pols delta and epsilon, but also showed no effect on pol alpha activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD50 values of 38.0-44.4 microM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol alpha-specific inhibitor, but also as a candidate drug for anti-cancer treatment.  相似文献   

19.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

20.
T Uemori  Y Ishino  H Doi    I Kato 《Journal of bacteriology》1995,177(8):2164-2177
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号