首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.  相似文献   

2.
3.
4.
5.
We have identified an Arabidopsis mutant that displays enhanced disease resistance (edr2) to the biotrophic powdery mildew pathogen Erysiphe cichoracearum. Inhibition of fungal growth on edr2 mutant leaves occurred at a late stage of the infection process and coincided with formation of necrotic lesions approximately 5 days after inoculation. Double-mutant analysis revealed that edr2-mediated resistance is suppressed by mutations that inhibit salicylic acid (SA)-induced defense signaling, including npr1, pad4 and sid2, demonstrating that edr2-mediated disease resistance is dependent on SA. However, edr2 showed normal responses to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000. EDR2 appears to be constitutively transcribed in all tissues and organs and encodes a novel protein, consisting of a putative pleckstrin homology (PH) domain and a steroidogenic acute regulatory protein-related lipid-transfer (START) domain, and contains an N-terminal mitochondrial targeting sequence. The PH and START domains are implicated in lipid binding, suggesting that EDR2 may provide a link between lipid signaling and activation of programmed cell death mediated by mitochondria.  相似文献   

6.
Powdery mildew pathogens are biotrophic fungi that infect large number of plant species. EDR1 (ENHANCED DISEASE RESISTANCE 1) is a negative regulator of plant disease resistance, and loss-of-function in the EDR1 gene confers enhanced disease resistance to powdery mildew pathogen Golovinomyces cichoracearum. In an edr1 suppressor screen, we recently found that a mutation in HPR1, a component of the THO/TREX complex, suppresses edr1-mediated disease resistance, however the hpr1 mutation enhances the ethylene-induced senescence in edr1. The hpr1 single mutant displays enhanced susceptibility, indicating that HPR1 is involved in plant defense responses.1 THO/TREX is a conserved protein complex that functions in pre-mRNA processing and mRNA export. Several components of THO/TREX complex in Arabidopsis have been identified. By searching Arabidopsis database, we found that Arabidopsis (Columbia-0) has two copies of UAP56, another component of the THO/TREX complex, and the UAP56 proteins are highly conserved. Similar to human UAP56 protein, Arabidopsis UAP56 also localizes to the nucleus, showing a pattern similar to the splicing speckles. Further characterization of the components of THO/TREX in Arabidopsis will provide new insights into the role of THO/TREX in defense responses in plants.  相似文献   

7.
Accumulating evidence shows that proper degradation of proteins that affect defense responses in a positive or negative manner is critical in plant immunity. However, the role of plant degradation systems such as the 26S proteasome in plant immunity is not well understood. Loss‐of‐function mutations in EDR2 (ENHANCED DISEASE RESISTANCE 2) lead to increased resistance to the adapted biotrophic powdery mildew pathogen Golovinomyces cichoracearum. To study the molecular interactions between powdery mildew pathogen and Arabidopsis, we performed a screen for suppressors of edr2 and found that mutation in the gene that encodes RPN1a, a subunit of the 26S proteasome, suppressed edr2‐associated disease resistance phenotypes. In addition, RPN1a is required for edr1‐ and pmr4‐mediated powdery mildew resistance and mildew‐induced cell death. Furthermore, we show that rpn1a displayed enhanced susceptibility to the fungal pathogen G. cichoracearum and to virulent and avirulent bacterial Pto DC3000 strains, which indicated that rpn1a has defects in basal defense and resistance (R) protein‐mediated defense. RPN1a–GFP localizes to both the nucleus and cytoplasm. Accumulation of RPN1a is affected by salicylic acid (SA) and the rpn1a mutant has defects in SA accumulation upon Pto DC3000 infection. Further analysis revealed that two other subunits of the 26S proteasome, RPT2a and RPN8a are also involved in edr2‐mediated disease resistance. Based on these results, we conclude that RPN1a is required for basal defense and R protein‐mediated defense. Our data provide evidence that some subunits of the 26S proteasome are involved in innate immunity in Arabidopsis.  相似文献   

8.
An Arabidopsis mutant with enhanced resistance to powdery mildew.   总被引:20,自引:0,他引:20       下载免费PDF全文
C A Frye  R W Innes 《The Plant cell》1998,10(6):947-956
We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was <16% of that observed on wild-type Arabidopsis. Reduction in sporulation correlated with a more rapid induction of defense responses. Autofluorescent compounds and callose accumulated in edr1 leaves 3 days after inoculation with E. cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.  相似文献   

9.
10.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.  相似文献   

11.
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.  相似文献   

12.
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome‐editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock‐down of TaEDR1 by virus‐induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off‐target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew‐induced cell death. Our study represents the successful generation of a potentially valuable trait using genome‐editing technology in wheat and provides germplasm for disease resistance breeding.  相似文献   

13.
Gu Y  Innes RW 《Plant physiology》2011,155(4):1827-1838
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to powdery mildew infection, enhanced senescence, and enhanced programmed cell death under both abiotic and biotic stress conditions. All edr1-mediated phenotypes can be suppressed by a specific missense mutation (keg-4) in the KEEP ON GOING (KEG) gene, which encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like (for HECT and RCC1-like) repeats. The molecular and cellular mechanisms underlying this suppression are poorly understood. Using confocal laser scanning microscopy and fluorescent protein fusions, we determined that KEG localizes to trans-Golgi network/early endosome (TGN/EE) vesicles. Both the keg-4 mutation, which is located in the carboxyl-terminal HERC2-like repeats, and deletion of the entire HERC2-like repeats reduced endosomal localization of KEG and increased localization to the endoplasmic reticulum and cytosol, indicating that the HERC2-like repeats facilitate the TGN/EE targeting of KEG. EDR1 colocalized with KEG to the TGN/EE when coexpressed but localized primarily to the endoplasmic reticulum when expressed alone. Yeast two-hybrid and coimmunoprecipitation analyses revealed that EDR1 and KEG physically interact. Deletion of the HERC2-like repeats abolished the interaction between KEG and EDR1 as well as the KEG-induced TGN/EE localization of EDR1, indicating that the recruitment of EDR1 to the TGN/EE is based on a direct interaction between EDR1 and KEG mediated by the HERC2-like repeats. Collectively, these data suggest that EDR1 and KEG function together to regulate endocytic trafficking and/or the formation of signaling complexes on TGN/EE vesicles during stress responses.  相似文献   

14.
To screen for potentially novel types of resistance to tomato powdery mildew Oidium neolycopersici, a disease assay was performed on 123 Arabidopsis thaliana accessions. Forty accessions were fully resistant, and one, C24, was analysed in detail. By quantitative trait locus (QTL) analysis of an F2 population derived from C24 × Sha (susceptible accession), two QTLs associated with resistance were identified in C24. Fine mapping of QTL‐1 on chromosome 1 delimited the region to an interval of 58 kb encompassing 15 candidate genes. One of these was Enhanced Disease Resistance 1 (EDR1). Evaluation of the previously obtained edr1 mutant of Arabidopsis accession Col‐0, which was identified because of its resistance to powdery mildew Golovinomyces cichoracearum, showed that it also displayed resistance to O. neolycopersici. Sequencing of EDR1 in our C24 germplasm (referred to as C24‐W) revealed two missing nucleotides in the second exon of EDR1 resulting in a premature stop codon. Remarkably, C24 obtained from other laboratories does not contain the EDR1 mutation. To verify the identity of C24‐W, a DNA region containing a single nucleotide polymorphism (SNP) unique to C24 was sequenced showing that C24‐W contains the C24‐specific nucleotide. C24‐W showed enhanced resistance to O. neolycopersici compared with C24 not containing the edr1 mutation. Furthermore, C24‐W displayed a dwarf phenotype, which was not associated with the mutation in EDR1 and was not caused by the differential accumulation of pathogenesis‐related genes. In conclusion, we identified a natural edr1 mutant in the background of C24.  相似文献   

15.
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.  相似文献   

16.
17.
Loss-of-function mutations in the Arabidopsis thaliana ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced programmed cell death under a variety of abiotic and biotic stress conditions. All edr1 mutant phenotypes can be suppressed by missense mutations in the KEEP ON GOING gene, which encodes a trans-Golgi network/early endosome (TGN/EE)-localized E3 ubiquitin ligase. Here, we report that EDR1 interacts with a second E3 ubiquitin ligase, ARABIDOPSIS TOXICOS EN LEVADURA1 (ATL1), and negatively regulates its activity. Overexpression of ATL1 in transgenic Arabidopsis induced severe growth inhibition and patches of cell death, while transient overexpression in Nicotiana benthamiana leaves induced cell death and tissue collapse. The E3 ligase activity of ATL1 was required for both of these processes. Importantly, we found that ATL1 interacts with EDR1 on TGN/EE vesicles and that EDR1 suppresses ATL1-mediated cell death in N. benthamiana and Arabidopsis. Lastly, knockdown of ATL1 expression suppressed cell death phenotypes associated with the edr1 mutant and made Arabidopsis hypersusceptible to powdery mildew infection. Taken together, our data indicate that ATL1 is a positive regulator of programmed cell death and EDR1 negatively regulates ATL1 activity at the TGN/EE and thus controls stress responses initiated by ATL1-mediated ubiquitination events.  相似文献   

18.
19.
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in the regulation of plant defense. The Raf-like MAP kinase kinase kinase (MAPKKK) EDR1 negatively regulates plant defense responses and cell death. However, how EDR1 functions, and whether it affects the regulation of MAPK cascades, are not well understood. Here, we showed that EDR1 negatively regulates the MKK4/MKK5-MPK3/MPK6 kinase cascade in Arabidopsis. We found that edr1 mutants have highly activated MPK3/MPK6 kinase activity and higher levels of MPK3/MPK6 proteins than wild type. EDR1 physically interacts with MKK4 and MKK5, and this interaction requires the N-terminal domain of EDR1. EDR1 also negatively affects MKK4/MKK5 protein levels. In addition, the mpk3, mkk4 and mkk5 mutations suppress edr1-mediated resistance, and over-expression of MKK4 or MKK5 causes edr1-like resistance and mildew-induced cell death. Taken together, our data indicate that EDR1 physically associates with MKK4/MKK5 and negatively regulates the MAPK cascade to fine-tune plant innate immunity.  相似文献   

20.

Key message

A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway.

Abstract

A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号