首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Available data suggest that a copper-and zinc-containing dismutase (CuZnSOD) plays a significant role in protecting eukaryotic cells against oxidative modifications which may contribute to cell aging. Here we demonstrated that depletion of CuZnSOD in Saccharomyces cerevisiae cells (Δsod1 cells) affected distinctly channel activity of VDAC (voltage dependent anion selective channel) and resulted in a moderate reduction in VDAC levels as well as in levels of protein crucial for VDAC import into mitochondria, namely Tob55/Sam50 and Tom40. The observed alterations may result in mitochondriopathy and subsequently in the shortening of the replicative life span observed for S. cerevisiaeΔsod1 cells.  相似文献   

2.
Using Saccharomyces cerevisiae mutants depleted of either isoform of VDAC (voltage dependent anion selective channel) we studied the role of the cytosol and mitochondria redox states in regulation of the expression levels of some mitochondrial proteins. The studied proteins are MnSOD and subunits of the protein import machinery of the mitochondrial outer membrane, i.e. Tom70, Tom40 and Tob55 (Sam50). We have shown that both the cytosol and mitochondria redox states depend on the presence of a given VDAC isoform. The cytosol redox state is mediated by VDAC1, although VDAC2 has a quantitative effect, whereas the mitochondria redox state depends on the presence of both VDAC isoforms. Moreover, we have shown that the cytosol redox status but not the mitochondrial one is decisive for the expression levels of the studied mitochondrial proteins. Thus, expression levels of some mitochondrial proteins is influenced by VDAC and this regulatory process at least partially does not require its channel activity as VDAC2 does not form a channel. Thus, VDAC can be regarded as a participant of signaling pathways in S. cerevisiae cells.  相似文献   

3.
Voltage dependent anion channel (VDAC) was identified in 1976 and since that time has been extensively studied. It is well known that VDAC transports metabolites across the outer mitochondrial membrane. The simple transport function is indispensable for proper mitochondria functions and, consequently for cell activity, and makes VDAC crucial for a range of cellular processes including ATP rationing, Ca2+ homeostasis and apoptosis execution. Here, we review recent data obtained for Saccharomyces cerevisiae cells used as a model system concerning the putative role of VDAC in communication between mitochondria and the nucleus. The S. cerevisiae VDAC isoform known as VDAC1 (termed here YVDAC) mediates the cytosol reduction/oxidation (redox) state that contributes to regulation of expression and activity of cellular proteins including proteins that participate in protein import into mitochondria and antioxidant enzymes. Simultaneously, copper-and-zinc-containing superoxide dismutase (CuZnSOD) plays an important role in controlling YVDAC activity and expression levels. Thus, it is proposed that VDAC constitutes an important component of a regulatory mechanism based on the cytosol redox state.  相似文献   

4.
Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

5.
It is well known that effective exchange of metabolites between mitochondria and the cytoplasm is essential for cell physiology. The key step of the exchange is transport across the mitochondrial outer membrane, which is supported by the voltage-dependent anion-selective channel (VDAC). Therefore, it is clear that the permeability of VDAC must be regulated to adjust its activity to the actual cell needs. VDAC-modulating activities, often referred to as the VDAC modulator, were identified in the intermembrane space of different organism mitochondria but the responsible protein(s) has not been identified as yet. Because the VDAC modulator was reported to act on VDAC of intact mitochondria when added to the cytoplasmic side it has been speculated that a similar modulating activity might be present in the cytoplasm. To check the speculation we used mitochondria of the yeast Saccharomyces cerevisiae as they constitute a perfect model to study VDAC modulation. The mitochondria contain only a single isoform of VDAC and it is possible to obtain viable mutants devoid of the channel (Deltapor1). Moreover, we have recently characterised a VDAC-modulating activity located in the intermembrane space of wild type and Deltapor1 S. cerevisiae mitochondria. Here, we report that the cytoplasm of wild type and Deltapor1 cells of S. cerevisiae contains a VDAC-modulating activity as measured in a reconstituted system and with intact mitochondria. Since quantitative differences were observed between the modulating fractions isolated from wild type and Deltapor1 cells when they were studied with intact wild type mitochondria as well as by protein electrophoresis it might be concluded that VDAC may influence the properties of the involved cytoplasmic proteins. Moreover, the VDAC-modulating activity in the cytoplasm differs distinctly from that reported for the mitochondrial intermembrane space. Nevertheless, both these activities may contribute efficiently to VDAC regulation. Thus, the identification of the proteins is very important.  相似文献   

6.
VDAC regulation: role of cytosolic proteins and mitochondrial lipids   总被引:3,自引:1,他引:2  
It was recently asserted that the voltage-dependent anion channel (VDAC) serves as a global regulator, or governor, of mitochondrial function (Lemasters and Holmuhamedov, Biochim Biophys Acta 1762:181–190, 2006). Indeed, VDAC, positioned on the interface between mitochondria and the cytosol (Colombini, Mol Cell Biochem 256:107–115, 2004), is at the control point of mitochondria life and death. This large channel plays the role of a “switch” that defines in which direction mitochondria will go: to normal respiration or to suppression of mitochondria metabolism that leads to apoptosis and cell death. As the most abundant protein in the mitochondrial outer membrane (MOM), VDAC is known to be responsible for ATP/ADP exchange and for the fluxes of other metabolites across MOM. It controls them by switching between the open and “closed” states that are virtually impermeable to ATP and ADP. This control has dual importance: in maintaining normal mitochondria respiration and in triggering apoptosis when cytochrome c and other apoptogenic factors are released from the intermembrane space into the cytosol. Emerging evidence indicates that VDAC closure promotes apoptotic signals without direct involvement of VDAC in the permeability transition pore or hypothetical Bax-containing cytochrome c permeable pores. VDAC gating has been studied extensively for the last 30 years on reconstituted VDAC channels. In this review we focus exclusively on physiologically relevant regulators of VDAC gating such as endogenous cytosolic proteins and mitochondrial lipids. Closure of VDAC induced by such dissimilar cytosolic proteins as pro-apoptotic tBid and dimeric tubulin is compared to show that the involved mechanisms are rather distinct. While tBid mostly modulates VDAC voltage gating, tubulin blocks the channel with the efficiency of blockage controlled by voltage. We also discuss how characteristic mitochondrial lipids, phospatidylethanolamine and cardiolipin, could regulate VDAC gating. Overall, we demonstrate that VDAC gating is not just an observation made under artificial conditions of channel reconstitution but is a major mechanism of MOM permeability control.  相似文献   

7.
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane (MOM). Due to its localization, VDAC is involved in a wide range of processes, such as passage of ATP out of mitochondria, and particularly plays a central role in apoptosis. Importantly, the assembly of VDAC provides interaction with a wide range of proteins, some implying oligomerization. However, many questions remain as to the VDAC structure, its supramolecular assembly, packing density, and oligomerization in the MOM is unknown. Here we report the so far highest resolution view of VDAC and its native supramolecular assembly. We have studied yeast MOM by high-resolution atomic force microscopy (AFM) in physiological buffer and found VDAC in two distinct types of membrane domains. We found regions where VDAC was packed at high density (approximately 80%), rendering the membrane a voltage-dependent molecular sieve. In other domains, VDAC has a low surface density (approximately 20%) and the pore assembly ranges from single molecules to groups of up to 20. We assume that these groups are mobile in the lipid bilayer and allow association and dissociation with the large assemblies. VDAC has no preferred oligomeric state and no long-range order was observed in densely packed domains. High-resolution topographs show an eye-shaped VDAC with 3.8 nm x 2.7 nm pore dimensions. Based on the observed VDAC structure and the pair correlation function (PCF) analysis of the domain architectures, we propose a simple model that could explain the phase behavior of VDAC, and illustrates the sensitivity of the molecular organization to conditions in the cell, and the possibility for modulation of its assembly. The implication of VDAC in cytochrome c release from the mitochondria during cell apoptosis has made it a target in cancer research.  相似文献   

8.
Intracellular localization of VDAC proteins in plants   总被引:1,自引:0,他引:1  
Voltage-dependent anion channels (VDACs) are porin-type -barrel diffusion pores. They are prominent in the outer membrane of mitochondria and facilitate metabolite exchange between the organelle and the cytosol. Here we studied the subcellular distribution of a plant VDAC-like protein between plastids and mitochondria in green and non-green tissue. Using in vitro studies of dual-import into mitochondria and chloroplasts as well as transient expression of fluorescence-labeled polypeptides, it could be clearly demonstrated that this VDAC isoform targets exclusively to mitochondria and not to plastids. Our results support the idea that plastids evolved a concept of solute exchange with the cytosol different from that of mitochondria.Abbreviations AOX Alternative oxidase - p Precursor form - POM36 Putative outer mitochondrial membrane proteins of 36 kDa - SSU Small subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) - VDAC Voltage-dependent anion channel  相似文献   

9.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

10.
Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ~4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (~75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.  相似文献   

11.
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells.  相似文献   

12.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

13.
14.
Voltage dependent anion channel (VDAC) is a vital ion channel in mitochondrial outer membranes and its structure was recently shown to be a 19 stranded β-barrel. However the orientation of VDAC in the membrane remains unclear. We probe here the topology and membrane orientation of yeast Saccharomyces cerevisiae in vivo. Five FLAG-epitopes were independently inserted into scVDAC1 and their surface exposure in intact and disrupted mitochondria detected by immunoprecipitation. Functionality was confirmed by measurements of respiration. Two epitopes suggest that VDAC (scVDAC) has its C-terminus exposed to the cytoplasm whilst two others are more equivocal and, when combined with published data, suggest a dynamic behavior.  相似文献   

15.
Water-filled channels are central to the process of translocating proteins since they provide aqueous pathways through the hydrophobic environment of membranes. The Tom and Tim complexes translocate precursors across the mitochondrial outer and inner membranes, respectively, and contain channels referred to as TOM and TIM (previously called PSC and MCC). In this study, little differences were revealed from a direct comparison of the single channel properties of the TOM and TIM channels of yeast mitochondria. As they perform similar functions in translocating proteins across membranes, it is not surprising that both channels are high conductance, voltage-dependent channels that are slightly cation selective. Reconstituted TIM and TOM channel activities are not modified by deletion of the outer membrane channel VDAC, but are similarly affected by signal sequence peptides.  相似文献   

16.
β-Barrel proteins are found in the outer membranes of bacteria, chloroplasts and mitochondria. The evolutionary conserved sorting and assembly machinery (SAM complex) assembles mitochondrial β-barrel proteins, such as voltage-dependent anion-selective channel 1 (VDAC1), into complexes in the outer membrane by recognizing a sorting β-signal in the carboxy-terminal part of the protein. Here we show that in mammalian mitochondria, masking of the C-terminus of β-barrel proteins by a tag leads to accumulation of soluble misassembled protein in the intermembrane space, which causes mitochondrial fragmentation and loss of membrane potential. A similar phenotype is observed if the β-signal is shortened, removed or when the conserved hydrophobic residues in the β-signal are mutated. The length of the tag at the C-terminus is critical for the assembly of VDAC1, as well as the amino acid residues at positions 130, 222, 225 and 251 of the protein. We propose that if the recognition of the β-signal or the folding of the β-barrel proteins is inhibited, the nonassembled protein will accumulate in the intermembrane space, aggregate and damage mitochondria. This effect offers easy tools for studying the requirements for the membrane assembly of β-barrel proteins, but also advises caution when interpreting the outcome of the β-barrel protein overexpression experiments.  相似文献   

17.
Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC–HK and the ANT (adenine nucleotide translocator)–CK–VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT–CK–VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC–HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to − 160 mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen.  相似文献   

18.
Kojer K  Bien M  Gangel H  Morgan B  Dick TP  Riemer J 《The EMBO journal》2012,31(14):3169-3182
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.  相似文献   

19.
Mitochondria of the yeast Saccharomyces cerevisiae constitute a perfect model to study the outer membrane channel modulation as besides the TOM complex channel they contain only a single isoform of the VDAC channel and it is possible to obtain viable mutants devoid of the channel. Here, we report that the fraction of the intermembrane space isolated from wild type and the VDAC channel-depleted yeast mitochondria, except of the well-known VDAC channel modulator activity, displays also the TOM complex channel modulating activity as measured in the reconstituted system and with intact mitochondria. The important factor influencing the action of both modulating activities is the energized state of mitochondria. Moreover, the presence of the VDAC channel itself seems to be crucial to properties of the intermembrane space protein (s) able to modulate the outer membrane channels because in the case of intact mitochondria quantitative differences are observed between modulating capabilities of the fractions isolated from wild type and mutant mitochondria.  相似文献   

20.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号