首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
In autotrophic cultures of Chlorella pyrenoidosa (strain 211-8b) incorporation of tritiated guanosine and uridine into ribosomal RNA is stimulated by light. Blue light of wavelengths around 457 nm is considerably more effective than red light around 679 nm (5·10-10 Einstein cm-2sec-1 for both). This effect can be demonstrated for young daughter cells (at the end of the dark period) and for older cells (at the end of the light period). It is shown to depend on a regulation of rRNA-synthesis. The blue light dependent enhancement of incorporation is more pronounced in the cytoplasmic rRNA (25 and 18 s) than in the chloroplast rRNA (23 and 16 s). Blue light of low intensity (1·10-10 Einstein cm-2sec-1) has nearly the same effectivity as the fivefold intensity, whereas red light of equal quantum fluxes enhances incorporation only slightly compared with the dark control. The blue light dependent enhancement of rRNA-synthesis continues in the following darkness in contrary to that caused by red light. This enhancement is also found in DCMU-poisened cultures. In contrast to this, in red light in presence of DCMU, incorporation into rRNA is nearly the same as in dark. It is concluded that the regulation of rRNA-synthesis in red light is closely connected to complete photosynthesis, while in blue light an additional regulation takes place independent of photosynthesis.  相似文献   

3.
In autotrophic cultures of Chlorella pyrenoidosa (strain 211-8b) incorporation of tritiated guanosine and uridine into ribosomal RNA is stimulated by light. Blue light of wavelengths around 457 nm is considerably more effective than red light around 679 nm (5-10(-10) Einstein cm-2 sec-1 for both). This effect can be demonstrated for young daughter cells (at the end of the dark period) and for older cells (at the end of the light period). It is shown to depend on a regulation of rRNA-synthesis. The blue light dependent enhancement of incorporation is more pronounced in the cytoplasmic rRNA (25 and 18 s) than in the chloroplast rRNA (23 and 16 s). Blue light of low intensity (1-10(-10) Einstein cm-2 sec-1) has nearly the same effectivity as the fivefold intensity, whereas red light of equal quantum fluxes enhances incorporation only slightly compared with the dark control. The blue light dependent enhancement of rRNA-synthesis continues in the following darkness in contrary to that caused by red light. This enhancement is also found in DCMU-poisened cultures. In contrast to this, is red light in presence of DCMU, incorporation into rRNA is nearly the same as in dark. It is concluded that the regulation of rRNA-synthesis in red light is closely connected to complete photosynthesis, while in blue light an additional regulation takes place independent of photosynthesis.  相似文献   

4.
Periodate-oxidized adenosine and AMP were inhibitory to both RNA and DNA synthesis in Ehrlich tumor cells in culture. With periodate-oxidized adenosine, the inhibition of RNA synthesis paralleled the inhibition of DNA synthesis. Periodate-oxidized AMP, however, was more inhibitory to DNA synthesis than to RNA synthesis. With both compounds, there was a decrease in the conversion of [14C]cytidine nucleotides to [14C]deoxycytidine nucleotides in the acid-soluble pool. The borohy-dride-reduced trialcohol derivative of the periodate-oxidized adenosine compound was not inhibitory to DNA or RNA synthesis in the tumor cells. The incorporation of [3H]uridine into 28S and 18S ribosomal RNA was inhibited by both periodate-oxidized adenosine and AMP, but the incorporation of [3H]uridine in 45S, 5S, and 4S RNA was essentially unaffected by these compounds. Periodate-oxidized adenosine inhibited Ehrlich tumor cell growth in vivo.  相似文献   

5.
Occurrence of a factor(s) which can selectively inhibit ribosomal RNA synthesis in isolated neurula cells of Xenopus laevis was examined in oocytes, unfertilized eggs, and embryos of Xenopus laevis. It was found that acid-soluble materials from full-sized oocytes, white-banded mature oocytes, unfertilized eggs, and pregastrular embryos were all active in significantly reducing the relative ratio of the [3H]uridine incorporation into 18S and 28S ribosomal RNA to that into 4S RNA from the control value. These results suggest that the inhibitor appears in the terminal step of oogenesis and, hence, may be assumed as a maternal regulator.  相似文献   

6.
5-Fluoroorotic acid treatment lowered the (Guanine + Cytosine)/(Adenine + Uracil) base ratio of 32P-labeled microsomal RNA from a control value of 1.36 to 1.00. Low doses of actinomycin D, which are effective in inhibiting ribosomal RNA synthesis without significantly affecting messenger RNA synthesis, caused a similar decrease in the base ratio. Microsomal RNA labeled by [3H]orotate in the presence of 5-fluoroorotic acid had approximately 12 the specific radioactivity but twice the hybridization efficiency of RNA labeled in its absence. Evidence is presented that this RNA (1) has a different structure from that of ribosomal RNA, (2) hybridizes to DNA with an efficiency consistent with that of other published studies of polysome-associated messenger RNA, and (3) possesses sequences which are present in other samples of liver microsomal RNA but not in kidney microsomal RNA. These properties differ from those known to be exhibited by 18 S and 28 S ribosomal RNA. Electrophoretic analysis of this [3H]orotate-labeled microsomal RNA indicated that the analogue greatly inhibited precursor incorporation into ribosomal RNA but had little or no effect on incorporation into messenger RNA. Ribosomal RNA and polyadenylate-rich nonribosomal RNA were prepared from total polyribosomes by phenol extraction at pH 7.6 and pH 9.0, respectively. 5-Fluoroorotic acid inhibited [3H]orotate or 32Pi incorporation into the pH 7.6 fraction much more effectively than incorporation into the pH 9.0 fraction. A subfraction of the pH 9.0 RNA which was retained by a polythymidylate-cellulose column had a greatly increased adenylate content.  相似文献   

7.
V. Raghavan 《Planta》1968,81(1):38-48
Summary The metabolism of RNA and protein in the gametophytes of bracken fern (Pteridium aquilinum) is affected by the quality of light in which they are grown. When sporelings were grown as two-dimensional gametophytes in blue light, particulate fractions separated from the sporelings exhibited greater incorporation of uridine-3H and leucine-3H into RNA and protein, respectively, than those from sporelings grown as one-dimensional protonema in red light. After various periods of exposure of gametophytes to red or blue light in the presence of uridine-3H, the nuclei-rich fraction showed the highest specific activity in RNA, and irrespective of incubation time, blue light was more effective than red light. The possibility that enhanced synthesis of RNA in the nucleus in response to blue light is significantly related to the morphological growth pattern of the gametophytes, is discussed.  相似文献   

8.
Wolffia arrhiza (L.) Wimm. was grown axenically in the chemostat under white luminescent light (photon fluence rate 23 ujnol m-2 s-1) and phosphate or magnesium limitation (0.075 and 0.01 jxmol 1-1, respectively). Aliquots (1 g fresh mass) were taken from the continuous cultures and were irradiated for 1 h with either white light (control) or monochromatic blue (453 nm) or red (654 nm) light. The amount of [5-3H]-uridine incorporated into cytosolic and chloroplastic rRNAs during these exposures was estimated and following results were obtained: In phosphate limited plants rod light considerably reduced and blue light slightly increased label incorporation as compared with the control. Moreover, in red light, chloroplast incorporation is relatively more slowed down than that in the cytosolic compartment (34 % as compared to 59 % of the control). In blue light the enhancement is approximately equal in both compartments. In magnesium limited plants incorporation under both blue and red light is moderately slower as compared with the control. In both cases also the retardation is slightly greater in the chloroplast than in the cytoplasm. The results suggest that rRNA metabolism is controlled by light quality as well as by mineral nutrition.  相似文献   

9.
10.
Logarithmically growing HeLa cell monolayers were treated with a range of concentrations of puromycin aminonucleoside (AMS). The effects of AMS were studied by the following means: microscope examination of treated cells; enumeration of the cell number using an electronic particle counter; analyses for DNA, RNA, and protein content; incorporation of P32 and H3-thymidine into nucleic acids; and fractionation of nucleic acids by column chromatography. Taking the rate of incorporation of the isotopic precursor as a measure of nucleic acid synthesis, it was found that concentrations of the inhibitor which had a rapid effect on the rate of cell division inhibited the synthesis of all types of nucleic acids and of protein, but depressed ribosomal RNA synthesis most markedly. Lower concentrations of AMS selectively inhibited ribosomal RNA and, to a lesser extent, transfer RNA synthesis. Partial inhibition of ribosomal RNA synthesis with low doses had no effect on the rate of cell division within the period studied (3 generation times). The cell content of RNA returned to normal when the inhibitor was removed.  相似文献   

11.
1. The incorporation of [14C]leucine into liver proteins of rats was measured in vivo at various times after treatment of the animals with dimethylnitrosamine and was correlated with the state of the liver ribosomal aggregates. Inhibition of incorporation ran parallel with breakdown of the aggregates. 2. Inhibition of leucine incorporation into protein and breakdown of ribosomal aggregates were not preceded by inhibition of incorporation of [14C]orotate into nuclear RNA of the liver. 3. Evidence was obtained of methylation of nuclear RNA in the livers of rats treated with [14C]dimethylnitrosamine. 4. Zonal centrifugation analysis of radioactive, nuclear, ribosomal and transfer RNA from livers of rats treated with [14C]dimethylnitrosamine revealed labelling of all centrifugal fractions to about the same extent. 5. It is suggested that methylation of messenger RNA might occur in the livers of dimethylnitrosamine-treated rats and the possible relation of this to inhibition of hepatic protein synthesis is discussed.  相似文献   

12.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

13.
Chlorella pyrenoidosa has been cultivated in radiation of wavelengths between 690–975 nm for several months. Absorption spectra and action spectra of photo-synthesis have been determined for far red and “white” light brown cultures, In vivo spectrophotometric analyses and action spectra showed that fur red growth Chlorella adapted to the extreme light conditions by an increase both in absorption and photosynthesis above 700 nm. It is proposed that som of the in vivo normal chlorophyll a forms were converted to a far red absorbing chlorophyll a form, giving the far red exposed suspension an increased photosynthetic activity between 700–740 nm. The analyses of far red grown Chlorella have also shown an increased photosynthesis in the blue part of the spectrum, presumably due to a decrease in photosynthetically inactive carotenoid content. By culturing Chlorella in a “white” light gradient between 0.5 × 104 and 3.7 × 104 erg cm?2 s?1, it has been demonstrated that light intensity did not influence pigment ratios between 500–750 nm. In the blue part, however, high light levels caused increased absorption because of increased carotenoid content. Some ecological aspects of this far red effect have also been discussed.  相似文献   

14.
Gametophytes of the fern Onoclea sensibilis grow as filaments in the dark and in red light and become planar in blue light. Pulse-labeling 4-day-old gametophytes with [35S]methionine at different times after transfer to dark, red, and blue light environments revealed higher rates of amino acid uptake and protein synthesis in blue light than in red light or in the dark. Characterization of the extant and newly synthesized soluble proteins by one- and two-dimensional gel electrophoresis showed that the patterns of protein accumulation and synthesis in gametophytes exposed to short periods of red or blue light were qualitatively indistinguishable from those of gametophytes maintained in the dark. However, some striking increases and decreases in the levels of certain polypeptides were noted and these changes were accentuated during continued growth of gametophytes in the different environments. The results show that photomorphogenesis of gametophytes of O. sensibilis is associated with quantitative rather than qualitative changes in the population of mRNAs available for translation.  相似文献   

15.
R. Cooke  Y. Meyer 《Planta》1981,152(1):1-7
Tobacco mesophyll protoplasts cultivated in vitro do not synthesize a measurable quantity of chloroplastic ribosomal RNA, but actively synthesize cytoplasmic ribosomal RNA, polyadenylated RNA, and proteins. These syntheses are essentially independent of the presence of hormones in the culture medium and are thus related to the ageing phenomenon induced by isolation from the plant and in-vitro culture. At all stages of culture and in all culture media, protoplasts incorporate low levels of thymidine into their DNA. However, the incorporation of considerable quantities of thymidine, indicative of the S phase, only takes place after 25–30 h and requires the presence of auxin and cytokinin.Abbreviations 6-BA 6-benzyladenine - 2,4-D 2,4 dichlorophenoxyacetic acid - DPC diethylpyrocarbonate - OD optical density; oligo-dT cellulose-oligothymidylic acid-cellulose - poly A+ RNA polyadenylated RNA - poly A- RNA non-polyadenylated RNA - tRNA ribosomal RNA - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tris buffer Tris (hydroxymethyl)aminomethane - tRNA transfer RNA  相似文献   

16.
In the leaves of rye seedlings (Secale cereale L.) grown at an elevated temperature of 32°C the formation of plastidic 70S ribosomes is specifically prevented. The resulting plastid ribosome-deficient leaves, which are chlorotic in light, represent a system for the identification of translation products of the 80S ribosomes among the chloroplastic proteins. Searching for the primary heat-sensitive event causing the 70S ribosome-deficiency, the thermostability of the chloroplastic capacity for RNA synthesis was investigated. The RNA polymerase activity of isolated normal chloroplasts from 22°-grown rye leaves was not inactivated in vitro at temperatures between 30° and 40°C. The ribosome-deficient plastids purified from bleached 32°-grown leaf parts contained significant RNA polymerase activity which was, however, lower than in functional chloroplasts. After application of [3H]uridine to intact leaf tissues [3H]uridine incorporation was found in ribosome-deficient plastids of 32°C-grown leaves. The amount of incorporation was similar to that in the control chloroplasts from 22°C-grown leaves. According to these results, it is unlikely that the non-permissive temperature (32°C) causes a general inactivation of the chloroplastic RNA synthesis in rye leaves.  相似文献   

17.
The incorporation of 14C-2-mevalonic acid into transfer RNA and ribosomal RNA (high molecular weight RNA) in rapidly growing, cytokinin-dependent tobacco (Nicotiana tabacum var. Wisconsin No. 38) callus cultures has been investigated. Approximately 40% of the label incorporated into transfer RNA was present in a ribonucleoside with chromatographic properties identical to those of cis-ribosylzeatin. The remainder of the label in the transfer RNA appears to be nonspecific incorporation resulting from degradation and metabolism of 14C-2-mevalonic acid by the tobacco callus tissue. Although the total radioactivity incorporated into ribosomal RNA was roughly the same as in transfer RNA, the specific radioactivity of the transfer RNA was about four times higher than that of the ribosomal RNA, and the ribosomal RNA labeling could be distinguished from the cytokinin labeling observed in transfer RNA. The distributions of the 14C-2-mevalonic acid label and cytokinin activity in tobacco callus transfer RNA fractionated by benzoylated diethylaminoethylcellulose chromatography indicate that at least two cytokinin-containing transfer RNA species are present in this tissue.  相似文献   

18.
The Kinetics of the Synthesis of Ribosomal RNA in E. coli   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of the synthesis of ribosomal RNA in E. coli has been studied using C14-uracil as tracer. Two fractions of RNA having sedimentation constants between 4 and 8S have kinetic behavior consistent with roles of precursors. The first consists of a very small proportion of the RNA found in the 100,000 g supernatant after ribosomes have been removed. It has been separated from the soluble RNA present in much larger quantities by chromatography on DEAE-cellulose columns. The size and magnitude of flow through this fraction are consistent with it being precursor to a large part of the ribosomal RNA.

A fraction of ribosomal RNA of similar size is also found in the ribosomes. This fraction is 5 to 10 per cent of the total ribosomal RNA and a much higher proportion of the RNA of the 20S and 30S ribosomes present in the cell extract. The rate of incorporation of label into this fraction and into the main fractions of ribosomal RNA of 18S and 28S suggests that the small molecules are the precursors of the large molecules. Measurements of the rate of labeling of the 20, 30, and 50S ribosomes made at corresponding times indicate that ribosome synthesis occurs by concurrent conversion of small to large molecules of RNA and small to large ribosomes.

  相似文献   

19.
Ribosomes of all eukaryotes contain a single molecule of 5S, 18S, and 28S RNA. In the frog Xenopus laevis the genes which code for 18S and 28S RNA are located in the nucleolar organizer, but these genes are not linked to the 5S RNA genes. Therefore the synthesis of the three ribosomal RNAs provides a model system for studying interchromosomal aspects of gene regulation. In order to determine if the synthesis of the three ribosomal RNAs are interdependent, the relative rate of 5S RNA synthesis was measured in anucleolate mutants (o/o), which do not synthesize any 18S or 28S RNA, and in partial nucleolate mutants (pl-1/o), which synthesize 18S and 28S RNA at 25% of the normal rate. Since the o/o and pl-1/o mutants have a complete and partial deletion of 18S and 28S RNA genes respectively, but the normal number of 5S RNA genes, they provide a unique system in which to study the dependence of 5S RNA synthesis on the synthesis of 18S and 28S RNA. Total RNA was extracted from embryos labeled during different stages of development and analyzed by polyacrylamide gel electrophoresis. Quite unexpectedly it was found that 5S RNA synthesis in o/o and pl-1/o mutants proceeds at the same rate as it does in normal embryos. Furthermore, 5S RNA synthesis is initiated normally at gastrulation in o/o mutants in the complete absence of 18S and 28S RNA synthesis.  相似文献   

20.
H. D. Payer  H. Mohr 《Planta》1969,86(3):286-294
Summary Morphogenesis and metabolism of the early gametophytes (=sporelings) of the common male fern are controlled by light. The normal two-dimensional development of the gametophytes takes place only in white or blue light; in red light alone, on the other hand, the sporelings remain filamentous even under conditions of equal photosynthetic rate.The problem has been whether blue light exerts its morphogenic influence through differential gene activation. In other words: does blue light mediate the synthesis of morphogenic enzymes which are required for normal morphogenesis. In an earlier paper (Drumm and Mohr, 1967) we have shown that blue light increases the rate of RNA synthesis within an hour whereas the first indication of a morphogenic change due to blue light is only discernible about 3 hours after the onset of blue light (Figs. 1,2). Furthermore we have shown (Mohr, 1965) that Actinomycin D specifically inhibits the blue light mediated morphogenic alterations, and Bergfeld (1967) has shown that blue light will rapidly lead to changes in nuclei and nucleoli in the fern sporelings. In the present paper it has been shown that blue light does increase the rate of protein synthesis about an hour after the transfer of the sporelings from the red into the blue light of equal quantum flux density (350 pE·cm-2·s-1).The rate of protein synthesis was measured in shortterm experiments (40min) using 14CO2. The photosynthetic rate was the same in red and blue; it was not influenced by the transfer(Fig. 3). Likewise the rate of 14C incorporation into the pool of free amino acids was not significantly different in red and blue light (Fig.4). On the other hand, the rate of incorporation of 14C into the protein increased rapidly after the transfer of the sporelings from the red into the blue light (Fig. 5). The same phenomenon (no influence of blue light on the specific activity of the free amino acid; a strong promotive influence on the specific activity of the protein-bound amino acid) was observed in the case of alanine which was investigated in detail (Figs. 6, 7). Since the increase of the protein content of the sporelings is not significant during the first six hours after transfer to blue light (Fig. 8) the protein induced by blue light and directly related to morphogenesis can only be a very small fraction of the total protein of the sporeling.The data strongly support the hypothesis (Ohlenroth and Mohr, 1964), that the morphogenic effect of blue light on the fern sporelings is due to the induction of morphogenic enzymes by blue light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号