首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.  相似文献   

16.
17.
18.
Phytohormones regulate numerous aspects of plant growth and development. Green-mature banana fruit were treated with deionized water (control), abscisic acid (ABA), indole-3-acetic acid (IAA) and ABA + IAA, respectively, to investigate the role of ABA and IAA in fruit ripening. Results showed that ABA accelerated fruit ripening, but IAA delayed the process. However, treatment of ABA + IAA showed little difference in fruit color and firmness. The acceleration of ABA and delay of IAA on banana ripening process seems to be neutralized by ABA + IAA. Digital gene expression revealed that ABA + IAA treated fruit maintained the similar color phenotype with the control by regulating the expression of chlorophyll degradation-related gene PaO (GSMUA_Achr6G25590_001), and carotenoid biosynthesis-related genes DXR (GSMUA_Achr3G20790_001) and PSY (GSMUA_Achr2G12480_001, GSMUA_Achr4G17270_001, GSMUA_Achr4G17290_001). Moreover, ABA + IAA treated fruit maintained the similar softening phenotype with the control by adjusting the expression of pectin degradation-related genes PME (GSMUA_Achr3G05740_001) and PL (GSMUA_Achr6G28160_001, GSMUA_Achr7G04580_001). ABA + IAA treatment nearly abolished the action of individual ABA or IAA through equilibrating the expression of specific genes involved in chlorophyll degradation, carotenoid biosynthesis and pectin degradation pathways in the postharvest ripening of banana. The interaction between ABA and IAA might exercise as an antagonistic mechanism of neutralizing the specific gene expression either induced by ABA or reduced by IAA in the postharvest ripening of banana.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号