首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The bovine papillomavirus type 1 (BPV-1) genome replicates as a plasmid within the nuclei of BPV-1-transformed murine C127 cells at a constant multiple copy number, and spontaneous amplification of the viral DNA is rarely observed. We report here that a mutant BPV-1 plasmid within a contact-inhibited C127 cell line replicated as a stable multicopy plasmid in exponentially growing cells but amplified to a high level in confluent cell culture. In situ hybridization analysis revealed that most of the mutant viral DNA amplification occurred in a minor subpopulation of cells within the culture. These consisted of giant nondividing cells with greatly enlarged nuclei, a cell form which was specifically induced in stationary-phase cultures. These observations indicated that expression of a viral DNA replication factor was cell growth stage specific. Consistent with this hypothesis, considerable amplification of wild-type BPV-1 DNA associated with characteristic giant cell formation was observed in typical wild-type virus-transformed C127 cultures following a period of growth arrest achieved by serum deprivation. Further observations indicated that induction of the giant-cell phenotype was dependent on BPV-1 gene expression and implicated a viral E1 replication factor in this process. Moreover, heterogeneity in virus genome copy numbers within the giant-cell population suggested a complex regulation of induction of DNA synthesis in these cells. It appears that this process represents a mechanism employed by the virus to ensure maximal viral DNA synthesis within a growth-arrested cell. Fundamental questions concerning the integration of the virus-cell control circuitry in proliferating and resting cells are discussed.  相似文献   

2.
3.
The bovine papillomavirus (BPV) type 1 E5 gene encodes a 44-amino-acid protein that can stably transform cultured rodent cells when expressed in the absence of all other viral genes. We have previously constructed a BPV-simian virus 40 recombinant virus (Pava-1) which efficiently expresses the BPV type 1 E5 gene in infected cells (J. Settleman and D. DiMaio, Proc. Natl. Acad. Sci. USA 85:9007-9011, 1988). Within 48 h of Pava-1 infection, the vast majority of mouse C127 cells underwent a dramatic morphologic transformation which was accompanied by cell proliferation. Infection of C127 cells made quiescent by contact inhibition and serum starvation caused a great induction of cellular DNA synthesis. These morphologic and mitogenic responses were proportional to the virus multiplicity of infection. Mutational analysis indicated that the E5 gene is both necessary and sufficient for these activities. Analysis of a variety of E5 missense mutants revealed a strong correlation between their phenotypes in the acute transformation assays following infection and in the stable focus-forming assay following transfection. Most of the defective mutants expressed normal levels of E5 protein following infection, indicating that their defective phenotypes are not due to the synthesis of an unstable protein. The failure to genetically resolve these E5 activities suggests that the ability of the E5 protein to cause acute morphologic transformation and reentry into the cell cycle may be intimately related to its ability to cause stable cell transformation and that these functions are probably mediated by a single biochemical activity of the E5 protein.  相似文献   

4.
Microinjection of recombinant plasmids containing bovine papillomavirus type 1 DNA into the nuclei of mouse C127 cells results in the stimulation of cellular DNA synthesis. Mutations in the viral E2 gene have no apparent effect on this activity even though the same mutations prevent efficient C127 cell focus formation and inhibit transactivation by this gene.  相似文献   

5.
Nonsense mutation in open reading frame E2 of bovine papillomavirus DNA.   总被引:27,自引:16,他引:11       下载免费PDF全文
Oligonucleotide-directed mutagenesis was used to construct a nonsense mutation in open reading frame (ORF) E2 of bovine papillomavirus DNA. A single base substitution mutation was constructed which converted a TAC codon into a TAG amber stop codon at a position in the ORF that did not overlap with any other viral ORFs. Full-length viral DNA containing the mutation induced only approximately 2% of the transformed foci of mouse C127 cells that were induced by wild-type DNA. In a different transformation assay, approximately one-half of the C127 cells which had acquired the mutant DNA gave rise to colonies containing at least some cells with transformed morphology. The constructed mutation was maintained in cell lines derived from cells which had acquired the mutant viral DNA, but the viral DNA appeared to be integrated into the host cell genome. Genetic mapping experiments proved that the constructed amber mutation caused the decrease in focus-forming activity and the integration of the mutant viral DNA. These results suggest that ORF E2 encodes a protein which is involved either directly or indirectly in some aspects of oncogenic transformation by bovine papillomavirus and in maintaining the viral DNA as a plasmid in transformed cells.  相似文献   

6.
L Petti  L A Nilson    D DiMaio 《The EMBO journal》1991,10(4):845-855
The bovine papillomavirus E5 gene encodes a 44 amino acid membrane-associated protein that can induce tumorigenic transformation of rodent fibroblast cell lines. Genetic studies suggest that the E5 protein may transform cells by influencing the activity of cellular proteins involved in growth regulation. We report here that the endogenous cellular beta type receptor for the platelet-derived growth factor (PDGF) is constitutively activated in C127 and FR3T3 cells stably transformed by the E5 protein, but not in these cell types transformed by a variety of other oncogenes. In C127 cells, a metabolic precursor as well as the mature form of the receptor is activated by E5 transformation. Activation of the receptor also occurs upon acute E5-mediated transformation of these cells and precedes mitogenic stimulation in this system. Moreover, activation of the receptor by addition of PDGF or the v-sis gene to untransformed cells is sufficient to induce DNA synthesis and stable growth transformation. We propose that the PDGF receptor is an important cellular intermediate in the transforming activity of the bovine papillomavirus E5 protein. There is a short region of sequence similarity between the fibropapillomavirus E5 proteins and PDGF, suggesting that the E5 proteins may activate the PDGF receptor by binding directly to it.  相似文献   

7.
Human adenovirus type 5 and temperature-sensitive mutants ts36, ts37, and ts125 induced cellular DNA synthesis in quiescent rodent cells at both permissive and nonpermissive temperatures. Cellular DNA synthesis induced by adenovirus type 5 or by serum required protein synthesis for both initiation and continuation, whereas viral DNA synthesis was not dependent upon continued protein synthesis once it was initiated. Both cellular and viral DNA replication was induced in adenovirus type 5-infected cells in the presence of dibutyryl cyclic AMP at concentrations which inhibited induction by serum which suggested that some of the controls of DNA synthesis in serum-treated and virus-infected cells are different. After adenovirus infection of quiescent cells, there was a decrease in the number of cells with G1 DNA content and an increase in cells with G2 diploid and greater DNA contents. Thus, adenovirus type 5 induces a complete round of cellular DNA replication, but in some cells, it induces a second round without completion of a normal mitosis. These results suggest that adenovirus type 5 is able to alter cell growth cycle controls in a way which may be related to its ability to transform cells.  相似文献   

8.
9.
Early gene E5 of bovine papillomavirus type 1 encodes a 44-amino-acid protein whose expression can transform immortalized mouse cell lines. We have previously reported that a chemically synthesized E5 peptide functions to induce cellular DNA synthesis upon microinjection into growth-arrested mouse cells. We further defined the two E5 domains essential for the full DNA synthesis induction activity by the analysis of E5 deletion and amino acid substitution mutant peptides. The first domain is the C-terminal 13-amino-acid core which is sufficient to activate DNA synthesis at high peptide concentration and contains two essential, highly conserved cysteine residues. The second domain is the 7-amino-acid hydrophobic sequence contiguous to the core domain which is sufficient to confer a 1,000-fold higher molar specific activity to the E5 peptide. A random hydrophobic sequence, but not charged amino acids, fulfills the function of the second domain.  相似文献   

10.
Cellular factors required for papillomavirus DNA replication.   总被引:8,自引:5,他引:3       下载免费PDF全文
T Melendy  J Sedman    A Stenlund 《Journal of virology》1995,69(12):7857-7867
In vitro replication of papillomavirus DNA has been carried out with a combination of purified proteins and partially purified extracts made from human cells. DNA synthesis requires the viral E1 protein and the papillomavirus origin of replication. The E2 protein stimulates DNA synthesis in a binding site-independent manner. Papillomavirus DNA replication is also dependent on the cellular factors replication protein A, replication factor C, and proliferating-cell nuclear antigen as well as a phosphocellulose column fraction (IIA). Fraction IIA contains DNA polymerase alpha-primase and DNA polymerase delta. Both of these polymerases are essential for papillomavirus DNA replication in vitro. However, unlike the case with T-antigen-dependent replication from the simian virus 40 origin, purified DNA polymerase alpha-primase and delta cannot efficiently replace fraction IIA in the replication reaction. Hence, additional cellular factors seem to be required for papillomavirus DNA replication. Interestingly, replication factor C and proliferating-cell nuclear antigen are more stringently required for DNA synthesis in the papillomavirus system than in the simian virus 40 in vitro system. These distinctions indicate that there must be mechanistic differences between the DNA replication systems of papillomavirus and simian virus 40.  相似文献   

11.
The papillomavirus E1 protein is essential for the initiation of viral replication. We previously showed that the bovine papillomavirus E1 protein is unstable and becomes resistant to ubiquitin-mediated degradation when tightly bound to cyclin E-cyclin-dependent kinase 2 (Cdk2) before the start of DNA synthesis. However, neither the protection nor the targeted degradation of E1 appears to depend on its phosphorylation by Cdk. Here, we report that Cdk phosphorylation of E1 is also not a prerequisite for the initiation of viral DNA replication either in vitro or in vivo. Nevertheless, we found that phosphorylation of one Cdk site, Ser283, abrogates E1 replicative activity only in a cellular context. We show that this site-specific phosphorylation of E1 drives its export from the nucleus and promotes its continuous nucleocytoplasmic shuttling. In addition, we find that E1 shuttling occurs in S phase, when cyclin A-Cdk2 is activated. E1 interacts with the active cyclin A-Cdk2 complex and is phosphorylated on Ser283 by this kinase. These data suggest that the phosphorylation of E1 on Ser283 is a negative regulatory event that is involved in preventing the amplification of viral DNA during S phase. This finding reveals a novel facet of E1 regulation that could account for the variations of the viral replication capacity during different cell cycle phases, as well as in different stages of the viral cycle.  相似文献   

12.
The effect of herpes simplex virus type 2 (HSV-2) infection on the synthesis of DNA in human embryonic fibroblast cells was determined at temperatures permissive (37 C) and nonpermissive (42 C) for virus multiplication. During incubation of HSV-2 infected cultures at 42 C for 2 to 4 days or after shift-down from 42 to 37 C, incorporation of (3H)TdR into total DNA was increased 2-to 30-fold as compared with mock-infected cultures. Analysis of the (3H)DNA suggested that host cell DNA synthesis was induced by HSV-2 infection. Induction of host cell DNA synthesis by HSV-2 also occurred in cells arrested in DNA replication by low serum concentration. The three strains of HSV-2 tested were capable of stimulating cellular DNA synthesis. Virus inactivated by UV irradiation, heat, or neutral red dye and light did not induce cellular DNA synthesis, suggesting that an active viral genome is necessary for induction.  相似文献   

13.
14.
15.
We investigated the transforming activity of human papillomavirus type 8 (HPV8) by expressing all early open reading frames from a heterologous promoter in different rodent fibroblast lines. Morphological transformation was observed only in G418-selected mouse C127 and Rat 1 cells containing an intact E6-coding region. E6 of HPV8 did not transform NIH 3T3 cells as did E6 of bovine papillomavirus type 1. C127 cells transformed by E6 were anchorage independent and had a reduced serum requirement but did not form tumors in nude mice. E7 of HPV8 showed no transforming potential, in contrast to E7 of HPV18 and HPV16. It was, however, able to complement an E7 mutant of bovine papillomavirus type 1 with a defect in high-copy-number DNA maintenance. The data indicate that the expression of the HPV8 E6 open reading frame is sufficient to induce morphological transformation in rodent fibroblasts, whereas E7 is involved in the replication of the viral DNA.  相似文献   

16.
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.  相似文献   

17.
Zhao KN  Frazer IH 《Journal of virology》2002,76(23):12265-12273
We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.  相似文献   

18.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

19.
Infection of primary baby rat kidney (BRK) cells with an adenovirus that carries an E1A 12S cDNA in place of the normal E1A region (adenovirus 5 [Ad5] 12S) resulted in the induction of cellular DNA synthesis and proliferation of the epithelial cells in the population, even in the absence of serum. Increased cellular DNA synthesis was first detectable by 12 h after infection and was maintained at a 10- to 20-fold higher level than in mock-infected cells. By 5 days after infection there was a 10-fold-greater number of 12S virus-infected BRK cells. These infected BRK cells retained many of their normal epithelial cell characteristics and were not transformed. The expression of the E1A 12S protein(s) occurred early after infection. There was no induction of adenoviral gene expression or viral DNA replication in these cells. The early effects of a fully transforming gene product(s) were also examined. The Ad5-simian virus 40 hybrid virus, Ad5.SVR4, in which the early region of simian virus 40 has replaced the E1 region of Ad5, was used to infect BRK cells. The kinetics of expression of the T antigens were similar to those of the 12S polypeptides. Infection with Ad5.SV4 also resulted in the induction of cellular DNA synthesis and cell proliferation at levels similar to those observed with the 12S virus. However, infection with Ad5.SVR4 resulted in cells that had lost some of their epithelial cell characteristics and were fully transformed. Thus, although the early cellular events induced by the two genes were similar, they did not yield the same final cellular phenotype.  相似文献   

20.
We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G2 phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号