首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Human peripheral blood cells, when cultured in vitro, release bone-resorbing factors, which have been called osteoclast-activating factors (OAF) but remain unidentified. We showed previously that a monocyte product, similar to interleukin 1 (IL 1), is a powerful stimulator of bone resorption in vitro. However, the possibility remained that other immune cell products may contribute to OAF activity. We have therefore tested three recombinant cytokines; IL 1, interleukin 2 (IL 2), and interferon-gamma (IFN-gamma) for their activity in a neonatal mouse bone resorption assay. We report here that purified recombinant murine IL 1 is a potent and powerful stimulator of bone resorption in vitro, active over a concentration range of 0.14 to 33 U/ml (1.3 X 10(-12) to 3.1 X 10(-10) M). IL 1-stimulated bone resorption was unaffected by cyclooxygenase inhibition but was inhibited by calcitonin and IFN-gamma. IL 2 had no effect on bone resorption.  相似文献   

2.
We investigated the regulation of IL6 biological activity, de novo synthesis, and mRNA levels in adult vascular endothelial cells (EC) by bacterial endotoxin or inflammatory cytokines. Cells incubated without stimulus released scant IL6 activity. IFN gamma, IL2, or PDGF did not augment IL6 release from EC. LPS, lipid A, and TNF increased IL6 release modestly (5 to 20-fold), while recombinant IL1s (rIL1s) stimulated this process 100 to 400-fold. Differential release of IL6 from EC treated with LPS or rIL1 continued for at least 144 hr. Exposure to LPS or rIL1 caused EC to synthesize IL6 de novo. EC secreted the newly synthesized IL6 into the supernatant, rather than retaining it within or bound to cells. EC accumulated IL6 mRNA after 3 hr of exposure to rIL1. However, we could only detect IL6 message in cells incubated with LPS under "superinduction" conditions with cycloheximide, consistent with lower levels of IL6 biological activity in response to LPS compared to IL1 stimulation. We propose that local production of IL6 by vascular EC, which comprise the barrier between tissues and the blood, may influence regional immune and inflammatory responses.  相似文献   

3.
Cytokines with bone-resorbing activity include IL 1 beta (pI 7), IL 1 alpha (pI 5), tumor necrosis factor (TNF), and lymphotoxin (LT). Possible interaction between IL 1 beta, the major mediator with osteoclast-activating factor (OAF) activity, and other cytokines was studied. By itself, IL 1 beta was 13-fold more potent than IL 1 alpha and 1000-fold more potent than either TNF or LT in stimulating bone resorption. Suboptimal concentrations of IL 1 beta or IL 1 alpha in combination with suboptimal concentrations of TNF or LT resulted in synergistic bone-resorptive responses (1.5 to 10 times the expected responses if their effects were additive). Synergy between either form of IL 1 and TNF or LT resulted in a twofold increase in activity of IL 1, and a 100-fold increase in activity of TNF or LT. However, even with optimal synergy, IL 1 beta remained 20-fold more potent in inducing bone resorption than TNF or LT. Because IL 1 beta is considerably more potent than TNF and LT in stimulating bone resorption either alone or under synergistic conditions, it is unlikely that TNF and LT are responsible for more than a minor proportion of the total bone-resorbing activity formerly referred to as OAF.  相似文献   

4.
Janus kinases (JAKs) play a pleiotropic role in several important physiological processes, such as cell maturation, cell proliferation, and cell death, via providing transmission signals from several molecules, such as cytokines, interferons, hormones, and growth factors, to the nucleus. Bone physiology and remodeling are markedly influenced by proinflammatory cytokines. Among them, interleukin-1 (IL-1) and IL-6 are considered potent stimulator of bone resorption. Several cytokine receptors, such as IL-6 receptors, are characterized by tyrosine kinases of the JAK family associated with their intracellular domains. There is an emerging interest in the effects of JAKs inhibition on the cells involved in bone remodeling. JAK inhibitors represent a new class of molecules involved in the therapy of numerous immune-mediated inflammatory diseases. In this review, we want to focus on the role of JAKs inhibitors on bone remodeling and on RANKL-RANK-OPG signal and inflammatory cytokines which are involved in the regulation of bone cells, such as osteoblasts and osteoclasts.  相似文献   

5.
Interleukin 6 (IL 6), IL 1 alpha, IL beta and tumor necrosis factor (TNF) alpha are four cytokines induced in monocytes by lipopolysaccharide (LPS); however, it is unclear whether the mechanisms which control their production are similar. In this study, we report the effects of prostaglandin E2 (PGE2), and two other cAMP-elevating agents, dibutyryl cAMP and 3-isobutyl-1-methyl-xanthine, on the in vitro LPS-induced production of IL 6, IL 1 alpha, IL 1 beta and TNF alpha by human monocytes. The production of these four cytokines was found to be selectively regulated in monocytes, by increases in intracellular cAMP levels. In effect, such agents enhanced, in a dose-dependent manner, both extracellular and cell-associated IL 6 production by LPS-stimulated monocytes. In contrast, it was confirmed, using the same samples, that these cAMP-elevating agents inhibit both extracellular and cell-associated TNF alpha production in a dose-dependent manner. IL 1 alpha and IL 1 beta production, measured by means of specific immunoreactive assays, were not significantly modified. Kinetic analysis showed that the potentiating effect of cAMP on IL 6 production, along with its inhibiting effect on TNF alpha production, could be seen as early as 1 hr after LPS stimulation. These results demonstrate that IL 6, TNF alpha, IL 1 alpha and IL 1 beta production can be differently modulated by an agent, PGE2, which is produced simultaneously by LPS-stimulated monocytes. Such differential autocrine modulation may play an important role in the regulation of the production of cytokines participating in immune and inflammatory responses.  相似文献   

6.
Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.  相似文献   

7.
The balance between bone formation and bone resorption is closely related to bone homeostasis. Osteoclasts, originating from the monocyte/macrophage lineage, are the only cell type possessing bone resorption ability. Osteoclast overactivity is thought to be the major reason underlying osteoclast‐related osteolytic problems, such as Paget's disease, aseptic loosening of prostheses and inflammatory osteolysis; therefore, disruption of osteoclastogenesis is considered a crucial treatment option for these issues. WKYMVm, a synthetic peptide, which is a potent FPR2 agonist, exerts an immunoregulatory effect. This peptide inhibits the production of inflammatory cytokines, such as (IL)‐1β and TNF‐α, thus regulating inflammation. However, there are only few reports on the role of WKYMVm and FPR2 in osteoclast cytology. In the current study, we found that WKYMVm negatively regulates RANKL‐ and lipopolysaccharide (LPS)‐induced osteoclast differentiation and maturation in vitro and alleviates LPS‐induced osteolysis in animal models. WKYMVm down‐regulated the expression of osteoclast marker genes and resorption activity. Furthermore, WKYMVm inhibited osteoclastogenesis directly through reducing the phosphorylation of STAT3 and NF‐kB and indirectly through the CD9/gp130/STAT3 pathway. In conclusion, our findings demonstrated the potential medicinal value of WKYMVm for the treatment of inflammatory osteolysis.  相似文献   

8.
Our earlier study reported the ability of interleukin 1 (IL1) to promote proliferation and to induce morphological changes of human thymic epithelial cells (TEC) in culture. The present study was undertaken to examine the effects of IL1 on the secretory function of TEC. Both human recombinant IL1 alpha and IL1 beta induced TEC to produce molecules in the culture supernatant fluids (TES) which displayed marked thymocyte proliferative capacities. This activity was specifically induced by IL1 since other TEC growth factors such as epidermal growth factor and a bovine pituitary extract had no effect on promoting secretion of T cell-activating molecules by TEC. Using specific radioimmunoassays for both forms of IL1, we found that unstimulated TEC produced negligible amounts of IL1 alpha and IL1 beta in TES, which were not increased by IL1 stimulation, and we concluded that the IL1-induced TES molecules were not IL1. IL1 induced TEC to produce IL6, as detected by the hybridoma growth factor biological activity. Neutralizing anti-IL6 antibodies completely blocked the thymocyte activating capacities of the IL1-induced TES thus implying a major role for IL6 in TEC-derived T cell activation. IL1 also induced TEC to produce GM-CSF as measured by bioassay and confirmed by an immunoenzymetric assay. Our results confirm that TEC are a source of cytokines and show that TEC respond to IL1 by producing cytokines with consequences on the thymic lymphoid population. This further emphasizes the importance and complexity of paracrine molecular interactions involved in intrathymic development.  相似文献   

9.
Leukemia inhibitory factor/differentiation-stimulating factor (LIF/D-factor), expression of its mRNA, and possible roles in bone metabolism were studied in murine primary and clonal osteoblast-like cells. Local bone-resorbing factors such as IL-1, TNF alpha, and LPS strongly induced expression of LIF/D-factor mRNA in both clonal MC3T3-E1 cells and primary osteoblast-like cells. Neither parathyroid hormone nor 1 alpha,25-dihydroxyvitamin D3 stimulated expression of LIF/D-factor mRNA. LIF/D-factor per se did not stimulate expression of its own mRNA. Appreciable amounts of LIF/D-factor were detected in synovial fluids from rheumatoid arthritis (RA) patients but not in those with osteoarthritis (OA). Simultaneous treatment with LIF/D-factor, IL-1, and IL-6 at the concentrations found in synovial fluids from RA patients greatly enhanced bone resorption, though these cytokines did not stimulate bone resorption when separately applied. This suggests that LIF/D-factor produced by osteoblasts is in concert with other bone-resorbing cytokines such as IL-1 and IL-6 involved in the bone resorption seen in the joints of RA patients. LIF/D-factor specifically bound to MC3T3-E1 cells with an apparent dissociation constant of 161 pM and 1,100 binding sites/cell. LIF/D-factor dose-dependently suppressed incorporation of [3H]thymidine into MC3T3-E1 cells. In addition, it potentiated the alkaline phosphatase activity induced by retinoic acid, though LIF/D-factor alone had no effect on enzyme activity. These results suggest that LIF/D-factor is involved in not only osteoclastic bone resorption but also osteoblast differentiation in conjugation with other osteotropic factors.  相似文献   

10.
Monocytes and macrophages are capable of degrading both the mineral and organic components of bone and are known to secrete local factors which stimulate host osteoclastic bone resorption. Recent studies have shown that monocytes and macrophages, including those isolated from neoplastic and inflammatory lesions, can also be induced to differentiate into cells that show all the cytochemical and functional characteristics of mature osteoclasts, including lacunar bone resorption. Monocyte/macrophage-osteoclast differentiation occurs in the presence of osteoblasts/bone stromal cells (which express osteoclast differentiation factor) and macrophage-colony stimulating factor and is inhibited by osteoprotegerin. Various systemic hormones and local factors (e.g. cytokines, growth factors, prostaglandins) modulate osteoclast formation by controlling these cellular and humoral elements. Various pathological lesions of bone and joint (e.g. carcinomatous metastases, arthritis, aseptic loosening) are associated with osteolysis. These lesions generally contain a chronic inflammatory infiltrate in which macrophages form a significant fraction. One cellular mechanism whereby pathological bone resorption may be effected is through generation of increased numbers of bone-resorbing osteoclasts from macrophages. Production of humoral factors which stimulate mononuclear phagocyte-osteoclast differentiation and osteoclast activity is also likely to influence the extent of pathological bone resorption.  相似文献   

11.
Interleukin (IL)-33 is a member of the IL-1 family. IL-33 effects are mediated through its receptor, ST2 and IL-1RAcP, and its signaling induces the production of a number of pro-inflammatory mediators, including TNFα, IL-1β, IL-6, and IFN-γ. There are conflicting reports on the role of IL-33 in bone homeostasis, with some demonstrating a bone protective role for IL-33 whilst others show that IL-33 induces inflammatory arthritis with concurrent bone destruction. To better clarify the role IL-33 plays in bone biology in vivo, we studied IL-33 KO mice as well as mice in which the cytokine form of IL-33 was overexpressed. Mid-femur cortical bone mineral density (BMD) and bone strength were similar in the IL-33 KO mice compared to WT animals during the first 8 months of life. However, in the absence of IL-33, we observed higher BMD in lumbar vertebrae and distal femur in female mice. In contrast, overexpression of IL-33 resulted in a marked and rapid reduction of bone volume, mineral density and strength. Moreover, this was associated with a robust increase in inflammatory cytokines (including IL-6 and IFN-γ), suggesting the bone pathology could be a direct effect of IL-33 or an indirect effect due to the induction of other mediators. Furthermore, the detrimental bone effects were accompanied by increases in osteoclast number and the bone resorption marker of C-terminal telopeptide collagen-I (CTX-I). Together, these results demonstrate that absence of IL-33 has no negative consequences in normal bone homeostasis while high levels of circulating IL-33 contributes to pathological bone loss.  相似文献   

12.
We reported before that monosodium urate (MSU) crystals were potent stimulators of endogenous pyrogen (EP) production from human and rabbit mononuclear phagocytes, and proposed that this property of MSU crystals may be important in the pathogenesis of gout. EP activity is now attributed to interleukin 1 (IL 1) peptides but IL 1 is not the only pyrogenic monocyte-derived cytokine, since both interferon-alpha (alpha-IFN) and tumor necrosis factor (TNF) are also pyrogenic in rabbits. Using a T cell comitogenic assay based on a murine helper T cell clone that does not respond to IFN or TNF, we now report the release of IL 1 activity from human blood monocytes and synovial fluid mononuclear cells (MNC), following stimulation with MSU crystals. MSU-induced supernatants with IL 1 activity were neutralized with rabbit antiserum to human IL 1 and also stimulated the growth ([3H]thymidine incorporation) of long-term fibroblast-like cell lines derived from human synovial rheumatoid exudate. Two other crystals associated with articular inflammation were tested: hydroxyapatite was a much less potent stimulus compared with MSU crystals, and calcium pyrophosphate dihydrate did not stimulate IL 1 release from human monocytes or synovial fluid MNC. As a model for the inflammatory consequences of acute and chronic overproduction of IL 1, gout is the only sterile inflammatory disease where the local and systemic pathology is compatible with such overproduction; raised IL 1 levels have been found at the site of inflammation, and a necessary etiologic agent, crystalline urate, has been shown unequivocally to be a direct activator of mononuclear IL 1 release.  相似文献   

13.
Bone is permanently renewed by the coordinated actions of bone-resorbing osteoclasts and bone-forming osteoblasts, which model and remodel bone structure during growth and adult life. The origin of osteoblastic cells (osteoblasts, osteocytes and bone-lining cells) differs from that of osteoclasts, but both cell groups communicate with each other using cytokines and cell-cell contact as to optimally maintain bone homeostasis. This communication in many ways uses the same players as the communication between cells in the immune system. During acute life-threatening illness massive bone resorption is the rule, while bone formation is suppressed. During chronic illness, the balance between bone formation and bone resorption also shifts, frequently resulting in decreased bone mass and density. Several factors may contribute to the osteopenia that accompanies chronic illness, the most important being undernutrition and low body weight, inflammatory cytokines, disorders of the neuroendocrine axis (growth hormone/IGF-1 disturbances, thyroid and gonadal deficiency), immobilization, and the long-term use of glucocorticoids. Their combined effects not only influence the generation and activity of all bone cells involved, but probably also regulate their life span by apoptotic mechanisms. Osteopenia or even osteoporosis and bone fragility, and before puberty also decreased linear growth and lower peak bone mass are therefore frequent consequences of chronic illnesses.  相似文献   

14.
IL-12 family cytokines are important in host immunity. Whereas some members (IL-12, IL-23) play crucial roles in pathogenesis of organ-specific autoimmune diseases by inducing the differentiation of Th1 and Th17 lymphocytes, others (IL-27 and IL-35) suppress inflammatory responses and limit tissue injury induced by these T cell subsets. In this study, we have genetically engineered a novel IL27p28/IL12p40 heterodimeric cytokine (p28/p40) that antagonizes signaling downstream of the gp130 receptor. We investigated whether p28/p40 can be used to ameliorate uveitis, a CNS inflammatory disease. Experimental autoimmune uveitis (EAU) is the mouse model of human uveitis and is mediated by Th1 and Th17 cells. We show here that p28/p40 suppressed EAU by inhibiting the differentiation and inflammatory responses of Th1 and Th17 cells while promoting expansion of IL-10+- and Foxp3+-expressing regulatory T cells. Lymph node cells from mice treated with p28/p40 blocked adoptive transfer of EAU to naïve syngeneic mice by immunopathogenic T cells and suppressive effects of p28/p40 derived in part from antagonizing STAT1 and STAT3 pathways induced by IL-27 and IL-6. Interestingly, IL27p28 also suppressed EAU, but to a lesser extent than p28/p40. The inhibition of uveitogenic lymphocyte proliferation and suppression of EAU by p28/p40 and IL27p28 establish efficacy of single chain and heterodimeric IL-12 family cytokines in treatment of a CNS autoimmune disease. Creation of the biologically active p28/p40 heterodimeric cytokine represents an important proof-of-concept experiment, suggesting that cytokines comprising unique IL-12 α- and β-subunit pairing may exist in nature and may constitute a new class of therapeutic cytokines.  相似文献   

15.
Recent works have demonstrated that mast cells may have an important role in immunologic reactions and inflammation once they synthesize and secrete many cytokines including IL4, IL5, IL6 and TNF-α. We have conducted research in order to verify if mast cells would participate in the local inflammatory immune response against Paracoccidioides brasiliensis in skin lesions characterized by a Th2 pattern of cytokines. Fifty-nine skin biopsies with previous histopathological diagnosis of paracoccidioidomycosis and immunohistochemical characterization of cytokines present in the inflammatory infiltrate were classified in three groups: group 1 (G1), with compact granuloma and a Th1 pattern of cytokines; group 2 (G2), with loose granuloma and a Th2 pattern of cytokines; group 3 (G3), both kind of granuloma in the same lesion, characterized by cytokines from Th1 and Th2 patterns. Ten biopsies from normal skin were used as control group. Mast cells were visualized and quantified by a toluidine blue/HCl staining and a double immunostaining was performed to detect a co-localization of mast cells and IL10. G2 presented an increased number of mast cells when compared to G1, G3 and control group and we frequently could find mast cells expressing IL10 in G2. The data obtained suggest that mast cells participate in the immune response against P. brasiliensis in skin lesions with loose granuloma and a Th2 pattern of cytokines. Considering these results, mast cells could constitute a source of IL10, contributing to a non-effective response against fungal antigens.  相似文献   

16.
A characteristic feature of tissue resident human mast cells (MCs) is their hTryptase-β-rich cytoplasmic granules. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and we have shown that this tetramer-forming tryptase has beneficial roles in innate immunity but adverse roles in inflammatory disorders like experimental arthritis. Because the key tissue factors that control tryptase expression in MCs have not been identified, we investigated the mechanisms by which fibroblasts mediate the expression and granule accumulation of mMCP-6. Immature mouse bone marrow-derived MCs (mBMMCs) co-cultured with fibroblast-like synoviocytes (FLS) or mouse 3T3 fibroblasts markedly increased their levels of mMCP-6. This effect was caused by an undefined soluble factor whose levels could be increased by exposing FLS to tumor necrosis factor-α or interleukin (IL)-1β. Gene expression profiling of mBMMCs and FLS for receptor·ligand pairs of potential relevance raised the possibility that IL-33 was a sought after fibroblast-derived factor that promotes tryptase expression and granule maturation via its receptor IL1RL1/ST2. MCs lacking IL1RL1 exhibited defective fibroblast-driven tryptase accumulation, whereas recombinant IL-33 induced mMCP-6 mRNA and protein accumulation in wild-type mBMMCs. In agreement with these data, synovial MCs from IL1RL1-null mice exhibited a marked reduction in mMCP-6 expression. IL-33 is the first factor shown to modulate tryptase expression in MCs at the mRNA and protein levels. We therefore have identified a novel pathway by which mesenchymal cells exposed to inflammatory cytokines modulate the phenotype of local MCs to shape their immune responses.  相似文献   

17.
Cytokines and osteolysis around total hip prostheses   总被引:6,自引:0,他引:6  
The aim of this work is to assess the correlation between the osteolysis around the prosthesis and the presence of cytokines favouring inflammation in the tissues at the interface between loosened prosthesis and bone. In this study, twenty-nine patients that underwent revision surgery were examined. Bioptic samples were collected at the interface between bone and implant both at the stem and socket level. Semiquantitative immunohistochemistry was performed to detect interleukin 1 alpha, interleukin 1 beta, interleukin 6 and tumour necrosis factor, cytokines that directly cause bone resorption and indirectly induce synthesis of other bone resorbing cytokines. Wear particles were identified and quantified by light microscopy. Radiographic evidence for osteolysis was scored by the Engh and Bobyn score. In tissues collected at the interface, the percentage of cells positive to IL1, IL6 and particularly to TNF increased in relation to the tissues collected at the interface with stable components. The cells occurring in the new capsule do not secrete cytokines in quantities that can be related to severity of wear. Cemented prostheses showed higher incidence of severe osteolysis, and higher levels of cytokines. It can be concluded that TNF, and to a lesser extent IL1 and IL6, are positively related to the severity of osteolysis around the prosthesis and therefore a pharmacological treatment can be hypothesized with anti-inflammatory or anti-cytokine drugs in order to limit or to avoid prosthesis loosening.  相似文献   

18.
In periodontitis, alveolar bone resorption is induced by excessive host immune and inflammatory response against bacterial infection. Secretory leukocyte protease inhibitor (SLPI) has anti-bacterial and anti-inflammatory activity in inflammatory responses. SLPI inhibits joint inflammation and bone destruction, but the function of SLPI in periodontitis is unclear. Therefore, this study investigated whether SLPI inhibits the inflammatory response and alveolar bone resorption in LPS-induced periodontitis of rats. Micro-computed tomography and histological analysis showed that SLPI inhibited alveolar bone resorption by LPS-induced periodontitis. Immunohistochemistry revealed that SLPI decreased tumor necrosis factor-α (TNF-α) and interleukine-1β (IL-1β) expression in periodontitis tissue, and decreased mRNA and protein expression of TNF-α and IL-1β in LPS-stimulated MC3T3-E1 cells. The results indicated that SLPI reduced alveolar bone resorption in LPS-induced periodontitis and inhibited inflammatory cytokine, such as TNF-α and IL-1β, expression in LPS-stimulated MC3T3-E1 preosteoblasts. Therefore, SLPI could be a regulatory molecule by inhibiting alveolar bone resorption through the reduction of inflammatory cytokines, and inducing osteoblast activation for bone formation.  相似文献   

19.
Inflammatory cytokines are well known to play crucial roles in the pathogenesis of rheumatoid arthritis. Among them, interleukin (IL)-17 is a cytokine that is mainly synthesized by activated T cells and its receptors are present in osteoblasts. The synthesis of IL-6, known to stimulate osteoclastic bone resorption, is reportedly responded to bone resorptive agents such as tumor necrosis factor-alpha (TNF-alpha) in osteoblasts. It has been reported that IL-17 enhances TNF-alpha-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. We previously showed that sphingosine 1-phosphate (S1-P) mediates TNF-alpha-stimulated IL-6 synthesis in these cells. In the present study, we investigated the mechanism of IL-17 underlying enhancement of IL-6 synthesis in MC3T3-E1 cells. IL-17 induced phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, specific inhibitors of p38 MAP kinase, significantly reduced the enhancement by IL-17 of TNF-alpha-stimulated IL-6 synthesis. IL-17 also amplified S1-P-stimulated IL-6 synthesis, and the amplification by IL-17 was suppressed by SB203580. Anisomycin, an activator of p38 MAP kinase, which alone had no effect on IL-6 level, enhanced the IL-6 synthesis stimulated by TNF-alpha. SB203580 and PD169316 inhibited the amplification by anisomycin of the TNF-alpha-induced IL-6 synthesis. Taken together, our results strongly suggest that IL-17 enhances TNF-alpha-stimulated IL-6 synthesis via p38 MAP kinase activation in osteoblasts.  相似文献   

20.
Bone is the preferred site of prostate cancer metastasis, contributing to the morbidity and mortality of this disease. A key step in the successful establishment of prostate cancer bone metastases is activation of osteoclasts with subsequent bone resorption causing the release of several growth factors from the bone matrix. CD11b+ cells in bone marrow are enriched for osteoclast precursors. Conditioned media from prostate cancer PC‐3 cells induces CD11b+ cells from human peripheral blood to differentiate into functional osteoclasts with subsequent bone resorption. Analysis of PC‐3 conditioned media revealed high amounts of IL‐6 and IL‐8. CD11b+ cells were cultured with M‐CSF and RANKL, IL‐6, IL‐8, and CCL2, alone or in combination. All of these conditions induced osteoclast fusion, but cells cultured with M‐CSF, IL‐6, IL‐8, and CCL2 were capable of limited bone resorption. Co‐incubation with IL‐6 and IL‐8 and the RANK inhibitor, RANK‐Fc, failed to inhibit osteoclast fusion and bone resorption, suggesting a potential RANKL‐independent mechanism of functional osteoclast formation. This study demonstrates that functional osteoclasts can be derived from CD11b+ cells derived from human PBMCs. Prostate cancer cells secrete factors, including IL‐6 and IL‐8, that play an important role in osteoclast fusion by a RANKL‐independent mechanism. J. Cell. Biochem. 106: 563–569, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号