首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12–O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.  相似文献   

2.
3.
The insulin-like growth factors (IGFs) I and II are present in extracellular fluids associated with specific binding proteins (IGFBPs) that can modify their biologic actions. These studies were undertaken to determine which forms of IGFBP are secreted by endometrial carcinoma (HEC-1B) and breast carcinoma (MDA-231) cells, to characterize variables that control IGFBP secretion, and to study the effect of IGFBP-1 and IGFBP-2 on IGF-I stimulated cell proliferation. Secreted IGFBPs were identified by ligand blotting and IGFBP-1 was quantified using a specific radioimmunoassay (RIA). MDA-231 cell conditioned media (CM) contained four (43,000, 39,000, 30,000 and 24,000 Mr) forms of IGFBP, and HEC-1B cell CM contained three forms (39,000, 34,000 and 30,000 Mr). Immunoblotting showed that the 30,000 Mr form secreted by both cell types was IGFBP-1. Likewise the 34,000 Mr band in HEC-1B media reacted with IGFBP-2 antiserum and the 39,000 and 43,000 Mr bands reacted with IGFBP-3 antiserum. IGF-I stimulated the secretion of IGFBP-3 from both cell types and IGFBP-2 from HEC-1B cells but either decreased or caused no change in secretion of IGFBP-1 and a 24,000 Mr form. In contrast, insulin inhibited the secretion of IGFBP-1 but increased the secretion of the 24,000 Mr form. Compounds that elevate intracellular cAMP levels increased the secretion of IGFBP-3, IGFBP-1, and the 24,000 Mr form from both MDA-231 and HEC-1B cells. When sparse cultures of MDA-231 cells were used, addition of IGF-I caused a 24% increase in cell number after 48 hr. This mitogenic response was enhanced by the presence of recombinant human IGFBP-1 (45% increase in cell number, P less than 0.001). Bovine IGFBP-2 did not potentiate IGF-I stimulated cell proliferation. These findings show that two tumor cell lines secrete distinct forms of IGFBPs and that there is differential regulation of IGFBP secretion. At least one form secreted by both tumors may act as a positive autocrine modulator of IGF-I's growth stimulating actions.  相似文献   

4.
The modulation of insulin-like growth factor-binding protein (IGFBP) secretion is an important variable affecting muscle cell metabolism, proliferation, and differentiation. We have previously shown that secretion of IGFBP-4 and IGFBP-5 by L6 and BC3H-1 muscle cells was stimulated by treatment with either insulin, IGF-I, or IGF-II. Herein, these cells were used to further identify mechanisms involved in controlling IGFBP secretion. Agents that elevate intracellular cAMP concentrations (dcAMP, forskolin, isoproterenol, and prostaglandin [PGE1]) increase secretion of IGFBP-4 and IGFBP-5 from L6 cells. Similar increases in IGFBP secretion were found by treatment with either insulin, IGF-I, or dcAMP. The effects of dcAMP and either insulin or IGF-I were additive, but the effects of insulin and IGF-I were not additive. These results suggest that insulin/IGF-I and dcAMP are acting via distinct mechanisms to stimulate IGFBP secretion. Indomethacin, which blocks endogenous prostaglandin synthesis, and progesterone, which decreases intracellular cAMP levels, decreased IGFBP-4 and IGFBP-5 secretion. IGFBP-5 secretion by BC3H-1 cells was increased by either insulin or IGF-I. Agents which elevate intracellular cAMP concentrations did not increase IGFBP-5 secretion. Additionally, these agents were not synergistic with either insulin or IGF-I. However, indomethacin and progesterone depressed IGFBP-5 secretion by BC3H-1 cells. In summary, there appear to be at least two intracellular signaling mechanisms controlling IGFBP-4 and IGFBP-5 secretion by L6 and BC3H-1 muscle cells. IGFBP secretion by L6 cells is stimulated by both insulin/IGF-I and cAMP-dependent pathways, whereas IGFBP-5 secretion by BC3H-1 cells is stimulated only by the insulin/IGF pathway. IGFBP secretion by both cell lines can be decreased by agents which depress cAMP levels. Our results suggest that two divergent but synergistic pathways modulate IGFBP production and these mechanisms can potentially modulate IGF activity during muscle cell proliferation and differentiation. J. Cell. Physiol. 174:293–300, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
6.
In previous studies, we have shown that insulin-like growth factor II (IGF-II) stimulates basal as well as ACTH-induced cortisol secretion from bovine adrenocortical cells more potently than IGF-I [1]. The steroidogenic effect of both IGFs is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we therefore characterized the IGFBPs secreted by bovine adrenocortical cells in primary culture, and investigated the effect of corticotropin (ACTH) and recombinant human IGF-I and IGF-II on the regulation of IGFBP synthesis. By Western ligand blotting, four different molecular forms of IGF-binding proteins were identified in conditioned medium of bovine adrenocortical cells with apparent molecular weights of 39-44 kDa, 34 kDA, 29-31 kDa, and 24 kDa. In accordance to their electrophoretic mobility, glycosylation status and binding affinity, these bands were identified by immunoprecipitation and immunoblotting as IGFBP-3, IGFBP-2, IGFBP-1, and deglycosilated IGFBP-4, respectively. Quantification of the specific bands by gamma counting revealed that, in unstimulated cells, IGFBP-3 accounts for approximately half of the detected IGFBP activity, followed by IGFBP-1, IGFBP-2 and IGFBP-4. ACTH treatment predominantly increased the abundance of IGFBP-1 and to a lesser extent IGFBP-3 in a time and dose-dependent fashion. In contrast, IGF-I or IGF-II (6.5 nM) preferentially induced the accumulation of IGFBP-3 (1.9-fold) and to a lesser extent of IGFBP-4, but did not show any effect on IGFBP-1. When ACTH and IGFs were combined, an additive stimulatory effect on the accumulation of IGFBP-3 and IGFBP-4 was observed. In contrast to their different steroidogenic potency, no significant difference in the stimulatory effect of IGF-I and IGF-II on IGFBP secretion was found. In conclusion, bovine adrenocortical cells synthesize IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4, and their secretion is regulated differentially by ACTH and IGFs. These results, together with earlier findings, suggest that IGF-binding proteins play a modulatory role in the regulation of differentiated adrenocortical functions. Therefore, bovine adult adrenocortical cells provide a useful tissue culture model in which the complex interactions between two IGF-ligands, at least four IGF binding proteins and two IGF-receptors can be evaluated.  相似文献   

7.
8.
IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes.   总被引:18,自引:0,他引:18  
The expression and secretion of IGF-I and IGFBP-3 were investigated in cultured human preadipocytes and in in vitro differentiated adipocytes derived from human subcutaneous adipose tissue under chemically defined culture conditions. Human preadipocytes expressed mRNAs for IGF-I and IGFBP-3 and secreted the corresponding proteins into the culture medium as measured by sensitive radioimmunoassays. In human adipocytes; specific mRNA-expression was comparable to that found in preadipocytes, but IGF-I secretion was increased 10-fold (3.87 +/- 0.69 vs. 0.41 +/- 0.11 ng/ml/10(6) cells/48 hrs, p < 0.05) and IGFBP-3 secretion 2.5-fold (7.34+/-1.15 vs. 3.27+/-0.38 ng/ml/10(6) cells/48 hrs, p<0.05) in the presence of adipogenic medium probably resulting in an increase of unbound IGF-I. Under serum-free, chemically defined conditions human growth hormone (hGH) and insulin were found to be positive regulators and cortisol was found to be a negative regulator of IGF-I and IGFBP-3 secretion in preadipocytes. In cultured human adipocytes, hGH showed no effect on IGF-I and IGFBP-3 secretion, whereas insulin stimulated and cortisol inhibited the secretion of both proteins. We conclude that IGF-I and IGFBP-3 may not only exert their actions in human adipose tissue via circulation, but also in an auto/paracrine way.  相似文献   

9.
Prostaglandin F2 alpha (PGF2 alpha) stimulates proliferation of clonal osteoblastic MC3T3-E1 cells mainly via the stimulation of phospholipase C. These cells constitutively produced and secreted insulin-like growth factor I (IGF-I). In addition, a neutralizing anti-IGF-I antibody completely abolished DNA synthesis stimulated by PGF2 alpha in MC3T3-E1 cells, suggesting that IGF-I indeed mediates the PGF2 alpha effect. However, PGF2 alpha decreased the expression of IGF-I mRNA and the secretion of immunoreactive IGF-I into the medium, whereas progression activity in the conditioned medium was not affected by PGF2 alpha. Although IGF-I alone did not stimulate DNA synthesis in MC3T3-E1 cells, when PGF2 alpha was added to the cultures, IGF-I stimulated their proliferation. Thus, PGF2 alpha may potentiate the action of IGF-I. At the same time, PGF2 alpha increased the number of high affinity binding sites (molecular mass of 130 kDa) for IGF-I in a dose-dependent manner. The increase in IGF-I-binding site number preceded the elevation of DNA synthesis by approximately 3 h. Furthermore, MC3T3-E1 cells secreted at least three species of IGF-binding proteins (IGFBPs) with molecular masses of 24, 30, and 34 kDa. In the early period of PGF2 alpha exposure, PGF2 alpha attenuated the secretion of all of these IGFBPs, whereas thereafter, it markedly increased their secretion, especially that of the 34-kDa IGFBP, suggesting a modulation of metabolism and action of IGF-I. These effects of PGF2 alpha on IGF-I receptor number and IGFBP secretion may play a role in the synergism between PGF2 alpha and IGF-I that results in the stimulation of DNA synthesis in MC3T3-E1 cells.  相似文献   

10.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

11.
12.
13.
Abstract

We have identified one class of IGF-I-binding sites and two classes of IGF-II-binding sites at the surface of the melanoma cell line IGR39. By means of affinity labeling with 125I-IGF-I, a 290–300 kDa form was characterized. Using 125I-IGF-II, a 270 kDa polypeptide was labeled, corresponding to the type II IGF receptor. In the two serials of experiments, the order of potency in inhibiting 125I-IGF-I or 125I-IGF-II labeling of IGF-related peptides and αIR3, an antibody directed against type I receptor α subunit, was the same as in competition experiments. When IGR39 cells were cultured in a serum-free medium, the number of both high affinity IGF-II and IGF-I binding sites was increased, by 8-and 5-fold respectively, without any significant change in Kd values. In both culture conditions, we found IGFBP-2, -3, -4 and a 30 kDa form which Mr was consistent with IGFBP-5 or -6. Except for IGFBP-2, the amount of secreted IGFBPs was modified depending on culture conditions: in conditioned medium from cells cultured with 10% FCS, the amount of IGFBP-3 or -4 was higher, and the amount of the 30 kDa IGFBP was lower when compared to conditioned medium from cells cultured in serum-free medium.  相似文献   

14.
15.
We have found that over one-half of the total cell surface 125I-insulin-like growth factor I (IGF-I) binding to BHK cells represents binding to IGF binding proteins (IGFBPs) rather than to the IGF-I receptor. In addition to a number of secreted IGFBPs, we have now characterized two cell-associated IGFBPs with unique characteristics. The cell-associated IGFBPs have molecular weights of 30,000 (30K) and 25,000 (25K), as determined by the Western ligand blot technique. IGFBP-30K is located at the cell surface and can be readily labeled by affinity cross-linking with 125I-IGF-I. Surface expression of IGFBP-30K increases 5.4 +/- 1.2-fold (n = 11) with serum starvation. This induction is fully evident by 4 h, plateauing by 24 h, and is completely inhibitable by cycloheximide. The fasting-induced increase in IGFBP-30K is inhibited by IGF-I and by des-IGF-I and, to a lesser extent, by insulin. Unlike cell-associated IGFBP-30K, secretion of IGFBP was stimulated (6.8 +/- 0.5-fold, n = 2) by IGF-I, whereas IGFBP secretion was inhibited 54% by insulin. These results demonstrate coordinate regulation of IGFBP by serum starvation and IGF-I, such that at low concentrations of IGF-I, cell surface binding protein increases whereas binding protein secretion decreases. At high concentrations of IGF-I, IGFBP secretion increases and cell surface IGF-I receptor, as well as IGFBP, decreases. Taken together, these regulatory events regulate the availability of IGF-I for biologic signalling.  相似文献   

16.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

17.
BACKGROUND: Recent studies have shown that immunocompetent cells synthesize and express growth hormone (GH), growth hormone receptors (GH-R), insulin-like growth factor I (IGF-I), IGF-I receptors (IGF-I-R) and different insulin-like growth factor binding proteins (IGFBPs). The aim of the current study was to evaluate the regulation of IGFBP and IGF-I secretion from immunocompetent cells by different mitogens. METHODS/RESULTS: We studied the in vitro secretion pattern of IGFBPs and IGF-I from human peripheral blood mononuclear cells (PBMC), derived from 10 normal adults and 8 GH-deficient patients with adult onset. In serum-free conditioned medium of unstimulated PBMC, derived from normal adults, Western ligand blotting (1D-WLB) revealed a 24-kD, a 34-kD and a 39/43-kD doublet band to be most prominent. According to their molecular weight and two-dimensional Western ligand blot analysis (2D-WLB), these bands are deglycosylated IGFBP-4, IGFBP-2 and IGFBP-3, respectively. When the cells were treated with the T-cell mitogen phytohemagglutinin (PHA) (10 microg/ml), a differential stimulation of IGFBPs was found with a 2.57 +/- 0.48-fold increase of IGFBP-4 (p < 0.01), a 1.55 +/- 0.13-fold increase of IGFBP-2 (p < 0.01), and a 1.35 +/- 0.19-fold increase of IGFBP-3 (n.s.). In contrast, treatment with the B-cell mitogen pokeweed mitogen (PWM) (10 microg/ml) caused only a modest 1.40 +/- 0.07-fold increase of IGFBP-4 (p < 0.01). Treatment with rhGH (100 ng/ml) or rhIGF-I (200 ng/ml) caused no significant induction of any specific band, respectively. In contrast to the secretion pattern of IGFBPs, IGF-I secretion of the PBMC was not stimulated by either PHA or PWM, but showed a significant increase after GH incubation (p < 0.01). A similar differentiated secretion pattern of IGFBPs and IGF-I was also observed in the conditioned medium of PBMC, derived from GH-deficient patients. CONCLUSION: In summary, at least three different IGFBPs are secreted by human PBMC. Secretion of IGFBPs by PBMC is differentially regulated by different lymphocyte mitogens. Secretion of IGFBPs by PBMC is independent of GH or IGF-I, whereas the secretion of IGF-I is stimulated by GH. PBMC derived from normal adults and GH-deficient patients show similar patterns of IGF-I and IGFBPs secretion, thus indicating that the paracrine/autocrine IGF-I-IGFBPs interactions of the PBMC are not altered by pituitary GH deficiency.  相似文献   

18.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen biosynthesis and prolidase activity in connective tissue cells. The disturbances in skin collagen metabolism (reflected by significant decrease in skin collagen content, collagen biosynthesis and prolidase activity) in fasted rats were accompanied by decrease in serum IGF-I level. Fasted rat serum was found to contain about 58% of IGF-I (101.6 +/- 15.4 ng/ml) as compared to control rat serum (175.7 +/- 19.8 ng/ml), while the skin of control and fasted rats contained similar concentrations of IGF-I (about 77 ng/g tissue). The insulin-like growth factor binding proteins (IGFBPs) of sera and tissue extracts (known to regulate IGF-I activity) were analysed by ligand blotting. In the serum of control rats one IGFBP band of about 46 kDa (corresponding to the acid-dissociated IGFBP-3) was detected. In the serum of fasted rats the 46 kDa IGFBP was not observed, however, an other IGFBP of about 30 kDa (corresponding to low molecular weight IGFBPs, e.g. IGFBP-1 or IGFBP-2) was found. The intensity of IGF-I binding to the 30 kDa IGFBP was much higher than that of IGFBP-3, found in control rat serum. Control and fasted rat skin contained similar IGFBPs, however their IGF-I binding abilities were much lower, compared to their serum counterparts. It was found that 46 kDa and 30 kDa proteins, observed in ligand blotting represent IGFBP-3 and IGFBP-1 or IGFBP-2. respectively as demonstrated by western immunoblot analysis. An increase in IGF-binding to 30 kDa IGFBP-1 and/or IGFBP-2 (known as an inhibitors of IGF-dependent functions) in the skin of fasted rats may explain the mechanism of reduced collagen biosynthesis and deposition in tissues during fasting.  相似文献   

19.
20.
In the circulation, most of IGFs are bound to a high molecular mass complex of 150 kDa that consists of IGF-I (or IGF-II), IGFBP-3 and the acid-labile subunit (ALS). Within rat liver, biosynthesis of these components has been localized to different cell populations with hepatocytes as source of ALS and nonparenchymal cells (endothelial and Kupffer cells (KC)) as source of IGFBP-3. In the present study, the regulatory effects of the cAMP analogs dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP (8-br-cAMP) on IGF-I, ALS, and IGFBP expression were evaluated in primary cultures of rat hepatocytes, KC as well as in cocultures of hepatocytes and KC. In cocultures, biosynthesis of IGFBP-3 and ALS was inhibited dose-dependently by db-cAMP and 8-br-cAMP while that of IGF-I, IGFBP-1, and -4 was stimulated as demonstrated by ligand and Northern blotting. IGFBP-3 expression in primary cultures of pure KC did not respond to cAMP treatment indicating the importance of a cellular interaction between KC and hepatocytes for the decreased IGFBP-3 synthesis. The inhibition of IGFBP-3 in db-cAMP-treated cocultures was due to a decrease of IGFBP-3 mRNA level accompanied by a reduced cellular degradation of IGFBP-3. We conclude that cAMP stimulate the biosynthesis of IGF-I, IGFBP-1, and -4 in cocultures of hepatocytes and KC thereby enabling the formation of binary IGF/IGFBP complexes while the formation of the 150 kDa complex is impaired through downregulation of IGFBP-3 and ALS. This complex regulation may be a prerequisite for the effects of cAMP-dependent hormones on the transfer of IGFs from circulation to peripheral tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号