首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The enzyme xanthine-guanine phosphoribosyltransferase from Escherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 microM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 microM for PRib-PP with guanine as second substrate and of 100 microM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

2.
An enzyme of Ralstonia/ Burkholderia strain DSM 6920 catalyzing the initial hydroxylation of 6-methylnicotinic acid at position 2 was purified to apparent homogeneity. It also catalyzed the unusual conversion of nicotinic acid to 2-hydroxynicotinic acid and was therefore designated as nicotinic acid dehydrogenase (NDH). Native NDH had a molecular mass of 280 kDa and was composed of subunits of 75, 30 and 16 kDa. It contained molybdenum, iron, acid-labile sulfur and FAD in a ratio of 1.6:7.3:8.0:0.6 mol(-1) of native enzyme. The molybdenum cofactor was characterized as molybdopterin cytosine dinucleotide. Zinc was identified as an additional metal ion in a molar ratio of 1.8 mol mol(-1) of native enzyme. Purified NDH exhibited a maximal specific activity of 22.6 micromol nitro blue tetrazoliumchloride reduced min(-1) mg(-1) of protein, using nicotinic acid as electron donor. The apparent K(m) value for nicotinic acid was determined to be 154 microM. Pyridine-3,5-dicarboxylic acid and quinoline-3-carboxylic acid were further substrates, but exhibited significantly different activity pH optima. Several artificial electron acceptors were reduced by NDH, but no activity was detected with NAD or O(2). NDH was inactivated upon incubation with cyanide, but no loss of activity was obtained in the presence of arsenite.  相似文献   

3.
A rapid and simple method, based on GMP Sepharose affinity chromatography, was used for the purification of human brain hypoxanthine guanine phosphoribosyltransferase. A single protein band was detected by polyacrylamide gel electrophoresis of the native purified enzyme. A subunit molecular weight of 25,000 was estimated by SDS gel electrophoresis. The Km values for hypoxanthine and phosphoribosyl pyrophosphate were 50 and 111 microM, respectively. The Ki values for GMP and IMP with phosphoribosyl pyrophosphate were 21 and 37 microM, respectively. The purified enzyme from human brain did not differ significantly from the human erythrocyte one in amino acid composition. The brain and erythrocyte hypoxanthine guanine phosphoribosyltransferases showed complete immunochemical identity on Ouchterlony double diffusion.  相似文献   

4.
A soluble enzyme that catalyzes the transfer of D-glucose from UDP-D-glucose to dolichyl phosphate has been prepared by sonic oscillation of Acanthamoeba castellani cysts. The product of catalysis is dolichyl beta-D-glucosyl phosphate. The enzyme requires a divalent cation, either magnesium or manganese, and the presence of a reducing agent for maximum activity. Solanesyl phosphate and ficaprenyl phosphate are alternative substrates, apparently at lower rates, but GDP-D-glucose, UDP-D-glucuronic acid, UDP-N-acetyl-D-glucosamine, and UDP-D-xylose are not substrates. The temperature optimum is 30 degrees C, the pH optimum is pH 7.0, the Km for UDP-Glc is 9.1 microM and for dolichyl phosphate it is 4.5 microM. Uridine monophosphate and UDP are inhibitors of the reaction, UDP causing reversal and UMP being a competitive inhibitor of UDP-Glc with a Ki of 62 microM. The enzyme can be stored indefinitely below -20 degrees C, is stable for several days at 4 degrees C, but is half-inactivated within 2 h at 30 degrees C and completely inactivated within 10 min at 52 degrees C.  相似文献   

5.
Enterobacter cloacae KY 3074 grown in a medium containing xanthine, hypoxanthine, guanine, or their nucleosides and nucleotides produced xanthine oxidase. The purified enzyme preparation showed a major protein band and a few minor bands in acrylamide gel electrophoresis. Molecular oxygen was the most effective electron acceptor. Ferricyanide and 2,6-dichlorophenolindophenol also served as electron acceptors, but NAD and NADP did not. Xanthine and hypoxanthine were good substrates, and guanine was also an effective substrate. The activity was inhibited by Ag2+, Cu2+, PCMB, and ascorbate. The spectrum of the Enterobacter enzyme resembled that of some known xanthine oxidizing enzymes, and this suggests a similarity in the prosthetic groups of these enzymes. The molecular weight of the native enzyme and subunit was 128,000 and 69,000, respectively.  相似文献   

6.
Purine nucleoside phosphorylase (EC 2.4.2.1, purine nucleoside:orthophosphate ribosyltransferase) was purified and characterized from the malarial parasite, Plasmodium lophurae, using a chromatofocusing (Pharmacia) column and a formycin B affinity column. The apparent isoelectric point of the native protein, as determined by chromatofocusing, was 6.80. By gel filtration and both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the native enzyme appeared to be a pentamer with a native molecular weight of 125,300 and a subunit molecular weight of 23,900. The enzyme had a broad pH optimum, pH 5.5-7.5, with maximum activity at pH 6.0-6.5. The enzyme reaction was readily reversible with a Km for inosine of 33 microM and a Km for hypoxanthine of 82 microM. Thioinosine, guanosine, and guanine were also substrates for the plasmodial enzyme, but allopurinol and adenine were not. The parasite enzyme was competitively inhibited by formycin B (Ki = 0.39 microM). Formycin A, azaguanine, and 8-aminoguanosine were not inhibitors of the enzyme.  相似文献   

7.
Coleoptiles of Avena contain a soluble enzyme system, capable of oxidizing indoleacetaldehyde (lAAld) to indoleacetic acid (IAA). There is a gradient in the concentration of the enzyme along the length of the coleoptile and the first inter-node. The top 5 mm segment of each organ is relatively richer in this enzyme than the rest of the tissue. The enzyme was purified 17.7-fold by fractional precipitation with ammonium sulphate followed by gel filtration on Sephadex. Optimal pH for lAAld oxidation is ca. 4.4. Activity of the enzyme is normally oxygen obligatory. But, in the absence of oxygen, phenazine methosulphate (PMS) serves as hydrogen acceptor for aldehyde oxidation, but not some other dyes tried. Approximately one mole of oxygen was consumed for each mole of IAA formed. Formation of H2O2 could not be detected. Added H2O2 inhibited the reaction. Prolonged dialysis progressively inactivated the enzyme. Added NAD, NADP, FMN, FAD, cytochrome c, cyanoco-balamin, folic acid and ascorbic acid did not restore the lost activity. But 10?3M cysteine restored about 60 % of the lost activity. The enzyme is an acidic protein, isoelectric at pH 4.05. For lAAld, under the conditions of experimentation, a Km of 3.45 × 10?4M was calculated. Besides lAAld, indole-3-aldehyde and phenylacetaldehyde served as substrates, but not acetaldehyde, propionaldehyde, salicylaldehyde, xanthine, hypoxanthine or catechol. Cyanide, dithionite and mercapto-ethanol totally inactivated the enzyme depending upon the concentration and duration of treatment. X-ray irradiation up to a dosage of 2900 r promoted the lAAld oxidizing activity of cell-free preparations made from irradiated coleoptiles. As yet, no cofactor requirements have been found for the activity. The enzyme is unlikely to be a pyridino- or a flavoprotein.  相似文献   

8.
a++Undecaprenyl pyrophosphate synthetase has been purified from Lactobacillus plantarum. It catalyzes the formation of a C55 polyprenyl pyrophosphate having isoprene residues with cis stereochemistry. The enzyme was shown to be an acidic protein (pI = 5.1), which can be partially purified by preparative gel electrophoresis and Blue-agarose column chromatography. The Km's of the enzyme for its substrates t,t-farnesyl pyrophosphate and isopentenyl pyrophosphate were determined to be 0.13 and 1.92 microM, respectively. The molecular weight of the enzyme was estimated by molecular sieve chromatography and gradient centrifugation to be 56,000 +/- 4000. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the protein was composed of a dimer of 30,000-Da subunits. The enzyme was inactivated by the arginine-specific reagents phenylglyoxal, butanedione and, cyclohexanedione, but this inactivation was not prevented by either of the substrates.  相似文献   

9.
Hydroxycinnamic acid ester hydrolase from the wheat bran culture medium of Aspergillus japonicus was purified 255-fold by ammonium sulfate fractionation, DEAE-Sephadex treatment and column chromatographies on DEAE-Sephadex, CM-Sephadex and various other Sephadexes. The purified enzyme was free from tannase and found to be homogeneous on polyacrylamide disc gel electrophoresis. Its molecular weight was estimated to be 150,000 by gel filtration and 142,000 by SDS-gel electrophoresis. The isoelectric point of the enzyme was pH 4.80. As to its amino acid composition, aspartic acid and glycine were abundant. The optimum pH and temperature for the enzyme reaction were, respectively, 6.5 and 55°C when chlorogenic acid was used as a substrate. The enzyme was stable between pH 3.0 to 7.5 and inactivated completely by heat treatment at 70°C for 10 min.

All metal ions examined did not activate the enzyme, while Hg++ reduced its activity. The enzyme was markedly inhibited by diisopropylfluorophosphate and an oxidizing reagent, iodine, although it was not affected so much by metal chelating or reducing reagents. The purified enzyme hydrolyzed not only esters of hydroxycinnamic acids such as chlorogenic acid, caffeoyl tartaric acid and p-coumaroyl tartaric acid, but also ethyl and benzyl esters of cinnamic acid. However, the enzyme did not act on ethyl esters of crotonic acid and acrylic acid or esters of hydroxybenzoic acids.  相似文献   

10.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

11.
Hypoxanthine-guanine phosphoribosyltransferase from a young man with purine overproduction and decreased purine salvage in fibroblast cultures was found to have low activity at concentrations of purine substrates at which the enzyme from normal individuals showed near maximal activity. The low enzyme activity was not associated with changes in the values of the Km(app) and Vmax(app) for any of the enzyme substrates. However, the enzyme activity was susceptible to substrate inhibition by hypoxanthine and guanine. The values obtained for the true Km, true Vmax, and true Ki for hypoxanthine were 26 +/- 10 microM, 1761 +/- 382 microunits/mg of protein, and 80 +/- 20 microM, respectively. The pattern of the substrate inhibition, as seen on a plot of 1/v versus hypoxanthine concentration, was characteristic of that associated with the formation of a dead-end complex between the inhibitory substrate and an enzyme form with which it normally does not react. The nature of this enzyme form and that of the dead-end complex was determined from double inhibition experiments, which indicated that hypoxanthine interacted with an enzyme-PPi intermediate to form an enzyme-hypoxanthine-PPi dead-end complex. The trapping of the enzyme in this inactive form explains the low activity at high purine base concentrations. Further information as to the nature of the reaction mechanism was obtained from plots of the reciprocal of enzyme activity versus the reciprocal of PP-ribose-P concentration at different fixed hypoxanthine concentrations. A pattern characteristic of uncompetitive substrate inhibition was obtained. This is indicative of an ordered sequential binding of substrates on the enzyme; PP-ribose-P binding before hypoxanthine. Thus, the variant enzyme showed an ordered sequential reaction mechanism, with the inhibitory substrate forming a dead-end complex with an enzyme-PPi intermediate.  相似文献   

12.
Rabbit muscle phosphoglucomutase was irreversibly inactivated upon preincubation with vitamin C (Vit C). Fe(III), NADH.NADH oxidase.Fe(III), or ferritin.Vit C. Substrate, glucose 1-phosphate and Mg2+ afforded partial protection. No altered amino acid could be detected in the inactive enzyme. Enzyme so inactivated was more susceptible to trypsin. More importantly, during inactivation, the enzyme lost up to 70% of its enzyme-bound phosphate; the completely inactivated enzyme retained the remainder of the bound phosphate which was isolatable as phosphoserine residing in the 22-amino acid long tryptic peptide. Free phosphoserine as well as those in phosphorylase alpha and phosphocasein were resistant to the oxidizing system, suggesting that the phosphoserine of phosphoglucomutase is uniquely vulnerable to these treatments. Alternatively, a fraction of the total 1 mol of phosphate in the phosphoform of phosphoglucomutase may not be associated with phosphoserine. Phosphoglyceromutase, which has phosphohistidine at its active site, was also inactivated by the oxidizing system. However, it did not release any of the bound phosphate.  相似文献   

13.
An alkaline proteinase of Aspergillus sulphureus (Fresenius) Thorn et Church has been purified in good yields from wheat bran culture by fractionation with ammonium sulfate, treatment with acrynol, and DEAE-Sephadex A-50 column chromatography. The crystalline preparation was homogeneous on sedimentation analysis and polyacrylamide gel zone electrophoresis. The molecular weight was calculated to be 23,000 by gel filtration. The amino acid composition of the enzyme was determined. The enzyme did not precipitate with acrynol. Optimum pH for the hydrolysis of casein was 7 to 10 at 35°G for 15 min. Optimum temperature was 50°C at pH 7 for 10 min. The enzyme was highly stable at the range of pH 6 to 11 at 5°C, whereas relatively stable at pH 6 to 7 at 35°C. Metalic salts tested did not affect activity. Chelating agents, sulfhydryl reagents, TPCK, and oxidizing or reducing reagents tested, except iodine, had no effect on the activity. Diisopro-pylfluorophosphate and N-bromosuccinimide almost completely inactivated the proteinase.  相似文献   

14.
Leukotriene A4 hydrolase from the human lung was purified to apparent homogeneity. The molecular weight (68,000-71,000), the amino acid composition, and the N-terminal amino acid sequence were similar to those of the human neutrophil enzyme but different from those of human erythrocyte enzyme. The lung enzyme was inactivated by its substrate, leukotriene A4. To elucidate the substrate and the inactivator specificity of this enzyme, we synthesized various geometric and positional isomers of leukotriene A4. 14,15-Leukotriene A4, leukotriene A4 methyl ester, and geometric isomers of leukotriene A4 could not serve as substrates, but they inactivated the enzyme. On the other hand, styrene oxide and (5S)-trans-5,6-oxide-8,10,14-cis-12-trans-eicosatetraenoic acid neither served as substrates nor inactivated the enzyme. These results indicate that whereas allylic epoxide structures of arachidonic acids are responsible for inactivation of the enzyme, the free carboxylic acid, 5,6-oxide, and the tetraene structure with the 7,9-trans-11,14-cis configuration are required as a substrate for leukotriene A4 hydrolase.  相似文献   

15.
A xanthosine-inducible enzyme, inosine-guanosine phosphorylase, has been partially purified from a strain of Escherichia coli K-12 lacking the deo-encoded purine nucleoside phosphorylase. Inosine-guanosine phosphorylase had a particle weight of 180 kilodaltons and was rapidly inactivated by p-chloromercuriphenylsulfonic acid (p-CMB). The enzyme was not protected from inactivation by inosine (Ino), 2'-deoxyinosine (dIno), hypoxanthine (Hyp), Pi, or alpha-D-ribose-1-phosphate (Rib-1-P). Incubating the inactive enzyme with dithiothreitol restored the catalytic activity. Reaction with p-CMB did not affect the particle weight. Inosine-guanosine phosphorylase was more sensitive to thermal inactivation than purine nucleoside phosphorylase. The half-life determined at 45 degrees C between pH 5 and 8 was 5 to 9 min. Phosphate (20 mM) stabilized the enzyme to thermal inactivation, while Ino (1 mM), dIno (1 mM), xanthosine (Xao) (1 mM), Rib-1-P (2 mM), or Hyp (0.05 mM) had no effect. However, Hyp at 1 mM did stabilize the enzyme. In addition, the combination of Pi (20 mM) and Hyp (0.05 mM) stabilized this enzyme to a greater extent than did Pi alone. Apparent activation energies of 11.5 kcal/mol and 7.9 kcal/mol were determined in the phosphorolytic and synthetic direction, respectively. The pH dependence of Ino cleavage or synthesis did not vary between 6 and 8. The substrate specificity, listed in decreasing order of efficiency (V/Km), was: 2'-deoxyguanosine, dIno, guanosine, Xao, Ino, 5'-dIno, and 2',3'-dideoxyinosine. Inosine-guanosine phosphorylase differed from the deo operon-encoded purine nucleoside phosphorylase in that neither adenosine, 2'-deoxyadenosine, nor hypoxanthine arabinoside were substrates or potent inhibitors. Moreover, the E. coli inosine-guanosine phosphorylase was antigenically distinct from the purine nucleoside phosphorylase since it did not react with any of 14 monoclonal antisera or a polyvalent antiserum raised against deo-encoded purine nucleoside phosphorylase.  相似文献   

16.
In the presence of intact Hymenolepis diminuta, trypsin was inactivated; intact worms had no apparent effect on subtilisin, pepsin, or papain. Inactivation of trypsin was demonstrable using azoalbumin as a substrate, but the inactivated enzyme retained full catalytic activity against benzoyl-DL-arginine-p-nitroanilide, p-tosyl-L-arginine methyl ester (low molecular weight synthetic trypsin substrates) and p-nitro-p-guanidinobenzoate (an active site titrant). Inactivation was not reversible under conditions of heating, freezing and thawing, or prolonged dialysis of the enzyme. Analyses of inactivated 3H-trypsin by cationic and SDS-polyacrylamide gel electrophoresis, and gel chromatography failed to indicate the presence of a high molecular weight trypsin inhibitor associated with the inactivated enzyme; no low molecular weight, dissociable inhibitor was demonstrable following thermal denaturation of the inactivated enzyme. Analyses of trypsin after incubation in the presence of pulse-labeled worms also failed to demonstrate the presence of any inhibitor of worm origin associated with the inactivated enzyme. The data suggest that inactivation is the result of a small structural or conformational change in the enzyme molecule, a change which partially (rather than totally) inactivates the enzyme towards protein substrates.  相似文献   

17.
The preceding paper showed that IMP dehydrogenase [IMP:NAD+ oxidoreductase, EC 1.2.1.14] tended to form a precipitable complex(es) through ionic and hydrophobic interactions. On the basis of these observations, a method was developed for purification of IMP dehydrogenase from Yoshida sarcoma ascites cells. On SDS-polyacrylamide gel electrophoresis, the purified preparation (1.19 U/mg protein) appeared homogeneous and its minimum molecular weight was estimated to be 68K daltons. Amino acid analyses indicated a subunit molecular weight of 68,042. Molecular sieve chromatography in the presence of 10% (NH4)2SO4 showed that the molecular weight of the native enzyme was 127K daltons. These values indicate that the native enzyme is composed of two identical subunits. However, the purified enzyme gave 4 protein bands on polyacrylamide gel electrophoresis under non-denaturing conditions, and appeared as a single fraction in the vicinity of the void volume on Ultrogel AcA 34 column chromatography at low salt concentration, indicating that its molecular weight exceeded 200K daltons. These findings indicate that the enzyme tends to aggregate owing to its own physicochemical characteristics. The Km values for IMP and NAD were calculated to be 12 and 25 microM, respectively, and the Ki values for XMP, GMP, and AMP to be 109, 130, and 854 microM, respectively. The purified enzyme showed full activity in the presence of K+, and K+ could be partially replaced by Na+. PCMB inactivated the enzyme, but the activity was completely restored by the addition of DTT. Cl-IMP also inactivated the enzyme and IMP prevented this inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

19.
Transport of adenine and hypoxanthine in human erythrocytes proceeds via two mechanisms: (1) a common carrier for both nucleobases and (2) unsaturable permeation 4-5-fold faster for adenine for hypoxanthine. The latter process was resistant to inactivation by diazotized sulfanilic acid. Carrier mediated transport of both substrates was investigated using zero-trans and equilibrium exchange protocols. Adenine displayed a much higher affinity for the carrier (Km approximately 5-8 microM) than hypoxanthine (Km approximately 90-120 microM) but maximum fluxes at 25 degrees C were generally 5-10-fold lower for adenine (Vmax approximately 0.6-1.4 pmol/microliters per s) than for hypoxanthine (Vmax approximately 9-11 pmol/microliters per s). The carrier behaved symmetrically with respect to influx and efflux for both substrates. Adenine, but not hypoxanthine reduced carrier mobility more than 10-fold. The mobility of the unloaded carrier, calculated from the kinetic data of either hypoxanthine or adenine transport, was the same thus providing further evidence that these substrates share a common transporter and that their membrane transport is adequately described by the alternating conformation model of carrier-mediated transport.  相似文献   

20.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号