首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effects of inhaled prostaglandin F2 alpha (PGF2 alpha) have been examined in eight subjects with asthma. Incremental PGF2 alpha aerosol concentrations, ranging from 1 to 5,000 micrograms/ml, were administered at 15-min intervals. Plethysmographic specific airway conductance (sGaw), forced expiratory volume at 1 s (FEV1), and maximum expiratory flow at 50% vital capacity breathing air (Vmax50% air) and 80% He-20% O2 (Vmax50% He-O2) were measured after each dose and compared with saline control values. We observed unexpected triphasic dose-response characteristics, i.e., an initial decline in physiological variables at low concentrations (1-100 micrograms/ml), followed by improvement at intermediate concentrations (100-1,000 micrograms/ml) and a subsequent steep decline at high concentrations (1,000-5,000 micrograms/ml). Improvement in FEV1 and Vmax50% air between 100 and 1,000 micrograms/ml was associated with sGaw increases above control levels in six subjects and a significant fall in density-dependent index (Vmax50% He-O2/Vmax50% air) when compared with values before challenge and at low concentrations. Inhaled atropine (5 mg) improved prechallenge lung function but had no effect on PGF2 alpha dose-response characteristics. Intermediate PGF2 alpha concentrations given as a single dose consistently induced greater FEV1 reductions than the same concentration during graded dose challenges. Our findings are consistent with the demonstration of in vivo airway tachyphylaxis and indicate that airway effects of PGF2 alpha are far more complex than previously reported. Moreover, these novel effects suggest that, in addition to its well-known bronchoconstrictor effects, PGF2 alpha directly or indirectly causes airway relaxation, predominantly in large airways.  相似文献   

2.
In this study we investigated the effect of the selective and potent thromboxane A2 (TxA2) receptor antagonist GR32191 on smooth muscle contraction induced by the TxA2 analogue U46619, prostaglandin (PG) D2, PGF2 alpha, and methacholine (MCh) in guinea pig airways in vitro and the airways response provoked by inhaled PGD2 and MCh in asthmatic subjects in vivo. GR32191 antagonized competitively the contractile responses of all three prostanoids to a similar degree but had no effect on MCh-induced contractions. In asthmatic subjects GR32191, in a single oral dose of 80 mg, did not affect base-line airway caliber or MCh-induced broncho-constriction but caused significant inhibition of PGD2-induced bronchoconstriction, displacing the concentration-response curves to the right by greater than 10-fold. The effect of the same oral dose of GR32191 on allergen-induced immediate bronchoconstriction was subsequently investigated in allergic asthmatic subjects. In individual subjects, GR32191 inhibited to varying degrees the overall bronchoconstrictor response, with the maximum effect occurring between 10 and 30 min after allergen challenge. These studies suggest that prostanoids contribute to the immediate bronchoconstriction induced by inhaled allergen in allergic asthmatics, and that this effect is mediated by stimulation of a thromboxane receptor.  相似文献   

3.
The effects of three increasing doses of platelet-activating factor (PAF) on airway caliber and methacholine bronchial responsiveness were studied. On separate occasions nine normal subjects inhaled a single cumulative provocation concentration of methacholine (control) causing a 40% fall (PC40 Vp30) in maximum expiratory flow rate at 70% of base-line vital capacity below total lung capacity during a partial forced expiratory maneuver or 100 or 200 micrograms PAF, and seven subjects inhaled a further dose of 400 micrograms PAF. Methacholine responsiveness was measured before, at 3 and 7 h, then on days 1, 2, 3, 4, 7, 10, and 14 after each challenge. The maximum falls in Vp30 appeared dose dependent, but a significant difference between the magnitude of the responses was only observed between the 400- and 100-micrograms PAF dose (P less than 0.05). During the control period repeated methacholine challenges resulted in a progressive increase in cumulative provocation concentration of an agonist causing a 20% fall in forced expiratory volume in 1 s from base line, reaching significance on days 1 and 2 (2.44- and 2.4-fold of base line, respectively, P less than 0.01) before returning to base line on day 7. No difference was seen in methacholine responsiveness after any of the three doses of PAF compared with that after the control. We conclude that PAF causes dose-dependent bronchoconstriction but does not change airways responsiveness to methacholine and that repeated high-dose methacholine challenge leads to loss of responsiveness to this agonist.  相似文献   

4.
This study investigated the relationships between pathological changes in small airways (<6 mm perimeter) and lung function in 22 nonasthmatic subjects (20 smokers) undergoing lung resection for peripheral lesions. Preoperative pulmonary function tests revealed airway obstruction [ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) < 70%] in 12 subjects and normal lung function in 10. When all subjects were considered together, total airway wall thickness was significantly correlated with FEV1/FVC (r2 = 0.25), reactivity to methacholine (r2 = 0.26), and slope of linear regression of FVC against FEV1 values recorded during the methacholine challenge (r2 = 0.56). Loss of peribronchiolar alveolar attachments was significantly associated (r2 = 0.25) with a bronchoconstrictor effect of deep inhalation, as assessed from a maximal-to-partial expiratory flow ratio <1, but not with airway responses to methacholine. No significant correlation was found between airway smooth muscle thickness and lung function measurements. In conclusion, this study suggests that thickening of the airway wall is a major mechanism for airway closure, whereas loss of airway-to-lung interdependence may contribute to the bronchoconstrictor effect of deep inhalation in the transition from normal lung function to airway obstruction in nonasthmatic smokers.  相似文献   

5.
To investigate possible mediator interaction in asthma, the effect of inhaled leukotriene (LT) C4 on bronchoconstriction provoked by histamine and prostaglandin (PG) D2 was studied in nine asthmatic subjects. The provocation doses of histamine, PGD2, and LTC4 required to produce a 12.5% decrease in baseline forced expiratory volume in 1 s (FEV1, PD12.5) and to further this fall to 25% (PD25-12.5) were determined. On three subsequent occasions, subjects inhaled either the PD12.5 LTC4 plus vehicle or vehicle plus the PD25-12.5 of either histamine or PGD2, and FEV1 and maximal flow at 70% of vital capacity below total lung capacity after a forced partial expiratory maneuver (Vp30) followed for 45 min. From these results, predicted time-course curves for LTC4 with histamine and LTC4 with PGD2 were calculated. On two final occasions, airway caliber was followed for 45 min after inhalation of the PD12.5 LTC4 followed by the PD25-12.5 of either histamine or PGD2. During the first 9 min after LTC4-histamine and LTC4-PGD2, the decreases in airway caliber were greater than the calculated predicted response. This interaction, although small, was significant with LTC4-PGD2 for both FEV1 (P = 0.01) and Vp30 (P less than 0.05) and with LTC4-histamine for Vp30 (P less than 0.05) but not for FEV1 (P less than 0.05). We conclude that inhaled LTC4 interacts synergistically with histamine and PGD2 and that this effect, although small, may be a relevant interaction in asthma.  相似文献   

6.
Asthmatic subjects were screened for the effects or volume history on the degree of induced airway obstruction with methacholine by comparing isovolumic maximal expiratory flows (Vmax) from partial expiratory flow-volume curves (P) begun near functional residual capacity (FRC) followed by maximal expiratory flow-volume (M) maneuvers begun from total lung capacity (TLC). The isovolumic Vmax values from M and P maneuvers defined two groups: one had a high M/P ratio (high group), indicating a large degree of reversal with deep inhalation, another had a low M/P ratio (low group), indicating minimal reversal. No differences were found between groups. A more complete study was later performed in which we measured specific airway conductance (sGaw) and anatomical dead space (VD) as indices of airway size and hysteresis before and after deep inhalation. The area of quasi-static transpulmonary pressure (Ptp) volume (V) curves from FRC to TLC and back to FRC was measured as an index of parenchymal hysteresis. At base line both groups showed a decrease in both sGaw and VD after a deep inhalation (DI). After constriction neither group changed VD after DI, whereas sGaw increased significantly in the high group after DI. This suggests that dilation of airways with DI occurred peripheral to those contributing to VD in the high group. The areas of the Ptp-V curves were equal at base line; yet the increase in areas with constriction in the low group was much greater.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We examined the changes in maximum expiratory flow (Vmax) and the density dependence of maximum expiratory flow (delta Vmax) during histamine-induced bronchoconstriction in dogs. Histamine acid phosphate solution was nebulized into the airways of six dogs to produce predominantly peripheral airway obstruction. Vmax air, Vmax with the dogs breathing 80% He-20% O2 (delta Vmax), and airway sites of flow limitation (choke points) were examined at four lung volumes (VL), which ranged from 51 to 23% of the control vital capacity (VC). The findings were interpreted in terms of the wave-speed theory of flow limitation. At all VL, Vmax air decreased during bronchoconstriction by approximately 30% compared with the control value. Resistances peripheral to a 0.3-cm-diam airway were increased about threefold with histamine, whereas resistances between 0.6-cm-diam bronchi and main-stem bronchi increased just slightly. Airway diameters were measured in the air-dried lung at 20 cmH2O transpulmonary pressure. Our results showed that only at 44% VC did delta Vmax decrease in all experiments after histamine to indicate peripheral obstruction (mean: 68.5 to 45%). At 23% VC, delta Vmax increased slightly, from 22 to 28%. At 23 and 36% VC, substantial differences in the wave-speed variables between air and HeO2 were present before bronchoconstriction, so that delta Vmax was low in some dogs, although peripheral airway obstruction was not evident. When bronchoconstriction was produced, delta Vmax at 23% VC could not be decreased further and even increased in four of six dogs. Thus changes in delta Vmax at given lung volume may not reflect the predominant site of airflow obstruction during bronchoconstriction.  相似文献   

8.
Specific conductance (sGaw) was measured without prior pharmacological induction of bronchoconstriction before and 5-10 s after a total lung capacity (TLC) volume history in normal subjects and in individuals with chronic airflow obstruction (CAO); increased sGaw after inspiration to TLC was considered evidence of airway hysteresis. Lung elastic recoil [Pst(L)] was also measured before and after inspiration to TLC. In the normal subjects 1) prebronchodilator sGaw increased significantly, whereas Pst(L) decreased significantly after inspiration to TLC; 2) modulators of cyclooxygenase activity had no significant effects on sGaw responses to deep inspiration; and 3) airway hysteresis diminished after inhalation of atropine or metaproterenol. In the CAO group 1) prebronchodilator sGaw and Pst(L) decreased significantly after inspiration to TLC, and 2) bronchoconstriction after deep inspiration diminished after inhalation of atropine or metaproterenol. This study demonstrates that normal airways exhibit hysteresis even without alteration of resting airway tone and that airway hysteresis is impaired in CAO.  相似文献   

9.
Time dependence of airways and lung parenchymal recoil hysteresis   总被引:1,自引:0,他引:1  
Hysteresis of airways and lung parenchymal recoil was examined in normal subjects by measuring specific conductance (sGaw) and lung elastic recoil (Pst,L) before and 5, 10, 15, and 30 s after deep inspiration (DI). Routine lung function tests were normal before and after inhaled metaproterenol. sGaw increased significantly for 10 s after DI. Also, sGaw(DI) was greater than sGaw in 11 of 12, 8 of 12, 7 of 12, and 6 of 12 subjects at 5, 10, 15, and 30 s, respectively, after DI. The response of sGaw to DI and metaproterenol correlated significantly with each other (r = 0.82, P less than 0.001). However, after metaproterenol, sGaw(DI) did not exceed sGaw. Pst,L decreased significantly for 15 s after DI, with the lowest measured Pst,L(DI) values occurring 5 s after DI (P less than 0.01-0.001). Both sGaw(DI) and Pst,L(DI) values returned to base line (preinspiration) in a time-dependent exponential manner, with time constants of 9.2 +/- 4.9 and 11.3 +/- 6.1 s, respectively; these time constants were not significantly different from each other. We conclude that airways hysteresis is the predominant finding in normal subjects (even without prior pharmacological bronchoconstriction) before but not after metaproterenol; Pst,L decreases after DI and, in normal individuals, returns to base line in a time-dependent manner; and the time-dependent behavior of airways and lung parenchymal hysteresis have opposite (and unequal) effects on airway caliber.  相似文献   

10.
In patients with mild chronic obstructive pulmonary disease (COPD), the effect of deep inspirations (DIs) to reverse methacholine-induced bronchoconstriction is largely attenuated. In this study, we tested the hypothesis that the effectiveness of DI is reduced with increasing disease severity and that this is associated with a reduction in the ability of DI to distend the airways. Fifteen subjects [Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I-II: n = 7; GOLD stage III-IV: n = 8] underwent methacholine bronchoprovocation in the absence of DI, followed by DI. The effectiveness of DI was assessed by their ability to improve inspiratory vital capacity and forced expiratory volume in 1 s (FEV(1)). To evaluate airway distensibility, two sets of high-resolution computed tomography scans [at residual volume (RV) and at total lung capacity] were obtained before the challenge. In addition, mean parenchymal density was calculated on the high-resolution computed tomography scans. We found a strong correlation between the response to DI and baseline FEV(1) %predicted (r(2) = 0.70, P < 0.0001) or baseline FEV(1)/forced vital capacity (r(2) = 0.57, P = 0.001). RV %predicted and functional residual capacity %predicted correlated inversely (r(2) = 0.33, P = 0.02 and r(2) = 0.32, P = 0.03, respectively), and parenchymal density at RV correlated directly (r(2) = 0.30, P = 0.03), with the response to DI. Finally, the effect of DI correlated to the change in large airway area from RV to total lung capacity (r(2) = 0.44, P = 0.01). We conclude that loss of the effects of DI is strongly associated with COPD severity and speculate that the reduction in the effectiveness of DI is due to the failure to expand the lungs because of the hyperinflated state and/or the parenchymal damage that prevents distension of the airways with lung inflation.  相似文献   

11.
Reactivity of the small and large airways to inhaled leucotriene D4, one of the leucotrienes that constitute slow reacting substance of anaphylaxis, was studied in eight patients with exogenous asthma and nine healthy subjects with no history of atopy. Non-cumulative dose response relations were constructed for leucotriene D4 in a randomised, double blind set up. Reactivity to the leucotriene was compared with reactivity to histamine in the two groups. Both groups reacted to leucotriene D4 with significant airway obstruction evident in forced expiratory volume in one second (FEV1), peak expiratory flow rate, maximal expiratory flow rate at 30% of forced vital capacity estimated from a partial flow volume curve initiated at 50% of vital capacity (V30), and an increase in volume of trapped gas. The airways of the patients were significantly (p less than 0.01) more reactive to leucotriene D4 than those of the controls. The differences were in order of magnitude, 10(2)-10(3) for FEV1 but only about 15 for V30 (p less than 0.05). The hyperreactivity of the airways of the asthmatic subjects to leucotriene D4 was comparable to that to histamine. Inhalation of leucotriene D4 caused pronounced dyspnoea only among the patients. The findings suggest a role for leucotriene D4 in human bronchial asthma.  相似文献   

12.
The effects of aging on changes in maximal expiratory flow rates and specific airway conductance after a deep breath were evaluated in 64 normal subjects. Flow rates (Vp) on partial expiratory flow-volume curves (PEFV), initiated from 60-70% of the vital capacity (VC), were compared with those (Vc) on maximal flow-volume curves (MEFV), initiated from total lung capacity (TLC), at a lung volume corresponding to 25% of VC on the MEFV curves. Specific airway conductance was measured before (sGaw) and after a deep inspiration (sGawDI). Bronchodilation after inspiration to TLC was inferred by Vp/Vc less than 1 and sGaw/sGawDI less than 1. The mean Vp was less than Vc. However, the ratio Vp/Vc increased significantly with age (r = 0.75, P less than 0.001). Specific conductance also increased after a deep inspiration (sGaw less than sGawDI). The ratio sGaw/sGawDIj increased slightly but significantly with age (r = 0.28, P less than 0.02). Measurement of lung elastic recoil pressures before and after a deep breath in a subgroup of patients (n = 14) suggested that the age-related increase in Vp/Vc was secondary to a decrement in the ability of a deep breath to decrease the upstream airway resistance. These findings suggest that even though changes in airway size after a deep breath as measured by sGaw/sGawDI have minimal age dependence, aging diminishes expiratory flow rates of MEFV curves relative to PEFV curves because of a decrease in the ability of a deep breath to increase the size of the peripheral airways.  相似文献   

13.
On the functional consequences of bronchial basement membrane thickening.   总被引:3,自引:0,他引:3  
Reticular basement membrane (RBM) thickness and airway responses to inhaled methacholine (MCh) were studied in perennial allergic asthma (n = 11), perennial allergic rhinitis (n = 8), seasonal allergic rhinitis (n = 5), and chronic obstructive pulmonary disease (COPD, n = 9). RBM was significantly thicker in asthma (10.1 +/- 3.7 microm) and perennial rhinitis (11.2 +/- 4.2 microm) than in seasonal rhinitis (4.7 +/- 0.7 microm) and COPD (5.2 +/- 0.7 microm). The dose (geometric mean) of MCh causing a 20% decrease of 1-s forced expiratory volume (FEV(1)) was significantly higher in perennial rhinitis (1,073 microg) than in asthma (106 microg). In COPD, the slope of the linear regression of all values of forced vital capacity plotted against FEV(1) during the challenge was higher, and the intercept less, than in other groups, suggesting enhanced airway closure. In asthma, RBM thickness was positively correlated (r = 0.77) with the dose (geometric mean) of MCh causing a 20% decrease of FEV(1) and negatively correlated (r = -0.73) with the forced vital capacity vs. FEV(1) slope. We conclude that 1) RBM thickening is not unique to bronchial asthma, and 2) when present, it may protect against airway narrowing and air trapping. These findings support the opinion that RBM thickening represents an additional load on airway smooth muscle.  相似文献   

14.
We studied changes in lung volumes and in bronchial response to methacholine chloride (MC) challenge when antishock trousers (AST) were inflated at venous occlusion pressure in healthy subjects in the standing posture, a maneuver known to shift blood toward lung vessels. On inflation of bladders isolated to lower limbs, lung volumes did not change but bronchial response to MC increased, as evidenced by a greater fall in the forced expiratory volume in 1 s (FEV1) at the highest dose of MC used compared with control without AST inflation (delta FEV1 = 0.94 +/- 0.40 vs. 0.66 +/- 0.46 liter, P less than 0.001). Full inflation of AST, i.e., lower limb and abdominal bladder inflated, significantly reduced vital capacity (P less than 0.001), functional residual capacity (P less than 0.01), and FEV1 (P less than 0.01) and enhanced the bronchial response to MC challenge compared with partial AST inflation (delta FEV1 = 1.28 +/- 0.47 liter, P less than 0.05). Because there was no significant reduction of lung volumes on partial AST inflation, the enhanced bronchial response to MC cannot be explained solely by changes in base-line lung volumes. An alternative explanation might be a congestion and/or edema of the airway wall on AST inflation. Therefore, to investigate further the mechanism of the increased bronchial response to MC, we pretreated the subjects with the inhaled alpha 1-adrenergic agonist methoxamine, which has both direct bronchoconstrictor and bronchial vasoconstrictor effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have previously produced evidence that, in patients with obstructive lung disease, compliance of extrathoracic airways is responsible for lack of mouth-to-alveolar pressure equilibration during respiratory efforts against a closed airway. The flow interruption method for measuring respiratory resistance (Rint) is potentially faced with the same problems. We reassessed the merits of the interruption technique by rendering the extrathoracic airways more rigid and by using a rapid shutter. We measured airway resistance (Raw) with whole body plethysmography during panting (at 2 Hz) and Rint during quiet breathing. Rint and Raw were expressed as specific airway (sGaw) and interruptive conductance (sGint), respectively. In nine healthy subjects (cheeks supported), sGint (0.140 +/- 0.050 s-1.cmH2O-1) was lower (P less than 0.02) than sGaw (0.182 +/- 0.043 s-1.cmH2O-1). By contrast, in 12 patients with severe obstructive lung disease (forced expiratory volume in 1 s/vital capacity = 41.0 +/- 19.8%), sGint (0.058 +/- 0.012 s-1.cmH2O-1) was higher (P less than 0.05) than sGaw (0.047 +/- 0.007 s-1.cmH2O-1), when the cheeks were supported. When the mouth floor was also supported, average values of sGaw (0.048 +/- 0.008 s-1.cmH2O-1) and sGint (0.049 +/- 0.014 s-1.cmH2O-1) became similar. In conclusion, we confirm previous findings in healthy subjects of higher values of Rint, with respect to Raw, probably because of differences in glottis opening between quiet breathing and panting. In airflow obstruction, supporting both the cheeks and the mouth floor decreased sGint, which became similar to sGaw.  相似文献   

16.
Regional expiratory flow limitation studied with Technegas in asthma.   总被引:1,自引:0,他引:1  
Regional expiratory flow limitation (EFL) may occur during tidal breathing without being detected by measurements of flow at the mouth. We tested this hypothesis by using Technegas to reveal sites of EFL. A first study (study 1) was undertaken to determine whether deposition of Technegas during tidal breathing reveals the occurrence of regional EFL in induced bronchoconstriction. Time-activity curves of Technegas inhaled during 12 tidal breaths were measured in four asthmatic subjects at control conditions and after exposure to inhaled methacholine at a dose sufficient to abolish expiratory flow reserve near functional residual capacity. A second study (study 2) was conducted in seven asthmatic subjects at control and after three increasing doses of methacholine to compare the pattern of Technegas deposition in the lung with the occurrence of EFL. The latter was assessed at the mouth by comparing tidal with forced expiratory flow or with the flow generated on application of a negative pressure. Study 1 documented enhanced and spotty deposition of Technegas in the central lung regions with increasing radioactivity during tidal expiration. This is consistent with increased impaction of Technegas on the airway wall downstream from the flow-limiting segment. Study 2 showed that both methods based on analysis of flow at the mouth failed to detect EFL at the time spotty deposition of Technegas occurred. We conclude that regional EFL occurs asynchronously across the lung and that methods based on mouth flow measurements are insensitive to it.  相似文献   

17.
The regional pattern and extent of airway closure measured by three-dimensional ventilation imaging may relate to airway hyperresponsiveness (AHR) and peripheral airways disease in asthmatic subjects. We hypothesized that asthmatic airways are predisposed to closure during bronchoconstriction in the presence of ventilation heterogeneity and AHR. Fourteen asthmatic subjects (6 women) underwent combined ventilation single photon emission computed tomography/computed tomography scans before and after methacholine challenge. Regional airway closure was determined by complete loss of ventilation following methacholine challenge. Peripheral airway disease was measured by multiple-breath nitrogen washout from which S(cond) (index of peripheral conductive airway abnormality) was derived. Relationships between airway closure and lung function were examined by multiple-linear regression. Forced expiratory volume in 1 s was 87.5 ± 15.8% predicted, and seven subjects had AHR. Methacholine challenge decreased forced expiratory volume in 1 s by 23 ± 5% and increased nonventilated volume from 16 ± 4 to 29 ± 13% of computed tomography lung volume. The increase in airway closure measured by nonventilated volume correlated independently with both S(cond) (partial R(2) = 0.22) and with AHR (partial R(2) = 0.38). The extent of airway closure induced by methacholine inhalation in asthmatic subjects is greater with increasing peripheral airways disease, as measured by ventilation heterogeneity, and with worse AHR.  相似文献   

18.
In healthy individuals, deep inspirations (DIs) have a potent bronchodilatory ability against methacholine (MCh)-induced bronchoconstriction. This is variably attenuated in asthma. We hypothesized that inability to bronchodilate with DIs is related to reduced airway distensibility. We examined the relationship between DI-induced bronchodilation and airway distensibility in 15 asthmatic individuals with a wide range of baseline lung function [forced expired volume in 1 s (FEV(1)) = 60-99% predicted]. After abstaining from DIs for 20 min, subjects received a single-dose MCh challenge and then asked to perform DIs. The effectiveness of DIs was assessed by the ability of the subjects to improve FEV(1). The same subjects were studied by two sets of high-resolution CT scans, one at functional residual capacity (FRC) and one at total lung capacity (TLC). In each subject, the areas of 21-41 airways (0.8-6.8 mm diameter at FRC) were matched and measured, and airway distensibility (increase in airway diameter from FRC to TLC) was calculated. The bronchodilatory ability of DIs was significantly lower in individuals with FEV(1) <75% predicted than in those with FEV(1) ≥75% predicted (15 ± 11% vs. 46 ± 9%, P = 0.04) and strongly correlated with airway distensibility (r = 0.57, P = 0.03), but also with residual volume (RV)/TLC (r = -0.63, P = 0.01). In multiple regression, only RV/TLC was a significant determinant of DI-induced bronchodilation. These relationships were lost when the airways were examined after maximal bronchodilation with albuterol. Our data indicate that the loss of the bronchodilatory effect of DI in asthma is related to the ability to distend the airways with lung inflation, which is, in turn, related to the extent of air trapping and airway smooth muscle tone. These relationships only exist in the presence of airway tone, indicating that structural changes in the conducting airways visualized by high-resolution CT do not play a pivotal role.  相似文献   

19.
Airway responsiveness to inhaled cholinergic agonist during the early stage of pulmonary O2 toxicity was examined to determine whether normobaric hyperoxia alters airway function. Eight healthy nonsmoking males with moderate base-line methacholine responsiveness breathed normobaric O2 (greater than or equal to 95%) over 12 h and on another occasion breathed air in an identical protocol. Vital capacity, expiratory flow, airway responsiveness to methacholine, and respiratory symptoms were measured at 0, 4, 8, and 12 h while subjects breathed O2 and 12 h afterwards. After 12 h, forced vital capacity was significantly decreased with O2 breathing but not with air breathing. At 4, 8, or 12 h of exposure and 12 h after exposure, there was no difference in methacholine sensitivity or reactivity between O2 and air-exposure trials. The earliest manifestations of pulmonary normobaric O2 toxicity in normal adults include diminished vital capacity and the onset of respiratory symptoms, but early O2 toxicity does not produce altered responsiveness to inhaled methacholine.  相似文献   

20.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号