首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cell swelling is known to result in unfolding of membrane invaginations and restructuring of F-actin. The effect of cell swelling on the intracellular distributions of other cytoskeletal proteins that constitute the submembrane cortical cytoskeleton is virtually unknown. This study focuses on the effects of cell swelling on non-erythroidal spectrin (fodrin, also known as spectrin II), a predominant component of the membrane cytoskeleton. The intracellular distribution of spectrin in vascular endothelial cells was studied by optical sectioning using a 3-D deconvolution microscopy system. Our results show that once bovine aortic endothelial cells (BAECs) reach confluency, the non-erythroidal spectrin is localized in the submembrane regions of the cells. Analysis of the intensity profiles of the non-erythroidal spectrin under isotonic and hypotonic conditions show that: (a) the width of the submembrane spectrin staining increases gradually with time within the first 5 minutes after the osmotic shock; (b) significant recovery is observed after 10 minutes even if the cells are maintained in hypotonic medium, and (c) spectrin distribution is altered by disrupting F-actin with latrunculin A but not by stabilizing F-actin with jasplakinolide. We suggest that cell swelling results in partial translocation of the submembrane spectrin to the cytosol and that it may play a major role in initiation of swelling-induced cellular events.  相似文献   

2.
Membrane tether formation from blebbing cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Dai J  Sheetz MP 《Biophysical journal》1999,77(6):3363-3370
Membrane tension has been proposed to be important in regulating cell functions such as endocytosis and cell motility. The apparent membrane tension has been calculated from tether forces measured with laser tweezers. Both membrane-cytoskeleton adhesion and membrane tension contribute to the tether force. Separation of the plasma membrane from the cytoskeleton occurs in membrane blebs, which could remove the membrane-cytoskeleton adhesion term. In renal epithelial cells, tether forces are significantly lower on blebs than on membranes that are supported by cytoskeleton. Furthermore, the tether forces are equal on apical and basolateral blebs. In contrast, tether forces from membranes supported by the cytoskeleton are greater in apical than in basolateral regions, which is consistent with the greater apparent cytoskeletal density in the apical region. We suggest that the tether force on blebs primarily contains only the membrane tension term and that the membrane tension may be uniform over the cell surface. Additional support for this hypothesis comes from observations of melanoma cells that spontaneously bleb. In melanoma cells, tether forces on blebs are proportional to the radius of the bleb, and as large blebs form, there are spikes in the tether force in other cell regions. We suggest that an internal osmotic pressure inflates the blebs, and the pressure calculated from the Law of Laplace is similar to independent measurements of intracellular pressures. When the membrane tension term is subtracted from the apparent membrane tension over the cytoskeleton, the membrane-cytoskeleton adhesion term can be estimated. In both cell systems, membrane-cytoskeleton adhesion was the major factor in generating the tether force.  相似文献   

3.
J Sadoshima  Z Qiu  J P Morgan    S Izumo 《The EMBO journal》1996,15(20):5535-5546
Hypotonic stress causes rapid cell swelling and initiates various cellular adaptive processes. However, it is unknown how cells initially sense low osmolarity and convert it into intracellular signals. We investigated the signal transduction mechanism initiated by hypotonic cell swelling in cardiac myocytes using c-fos expression as a nuclear marker. Treatment of myocytes with hypotonic culture media rapidly induced c-fos expression, whereas hypertonic stress had no effect. Transfection of c-fos reporter gene constructs suggested that the hypotonic stress response element maps to the serum response element of the c-fos promoter. Hypotonic stress immediately (within 5 s) activated tyrosine kinase activity, while activation of ERK1/2 peaked at 5 min. Stress-activated kinase (JNK1) was modestly activated at 15 min, whereas HOG1 like kinase (p38) was not activated by hypotonic stress. Extensive pharmacological studies indicated that only tyrosine kinase inhibitors suppressed the hypotonic swelling-induced c-fos expression. The effect of hypotonic stress was mimicked by chlorpromazine, which is known to cause membrane deformation. These results suggest that the signaling mechanism of hypotonic stress is distinct from that of hyperosmolar stress in mammalian cells. Tyrosine kinase activation is the earliest detectable cell response and plays an essential role in hypotonic swelling-induced ERK1/2 activation and c-fos expression.  相似文献   

4.
Cell swelling stimulates phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) in hepatocytes, and the PI3K signaling pathway is involved in cAMP-mediated translocation of sinusoidal Na(+)/taurocholate (TC) cotransporter (Ntcp) to the plasma membrane. We determined whether cell swelling also stimulates TC uptake and Ntcp translocation via the PI3K and/or MAPK signaling pathway. All studies were conducted in isolated rat hepatocytes. Hepatocyte swelling induced by hypotonic media resulted in: 1) time- and medium osmolarity-dependent increases in TC uptake, 2) an increase in the V(max) of Na(+)/TC cotransport, and 3) wortmannin-sensitive increases in TC uptake and plasma membrane Ntcp mass. Hepatocyte swelling also induced wortmannin-sensitive activation of PI3K, protein kinase B, and p70(S6K). Rapamycin, an inhibitor of p70(S6K), inhibited cell swelling-induced activation of p70(S6K) but failed to inhibit cell swelling-induced stimulation of TC uptake. Because PD98095, an inhibitor of MAPK, did not inhibit cell swelling-induced increases in TC uptake, it is unlikely that the effect of cell swelling on TC uptake is mediated via the MAPK signaling pathway. Taken together, these results indicate that 1) cell swelling stimulates TC uptake by translocating Ntcp to the plasma membrane, 2) this effect is mediated via the PI3K, but not MAPK, signaling pathway, and 3) protein kinase B, but not p70(S6K), is a likely downstream effector of PI3K.  相似文献   

5.
The therapeutic efficacy of mesenchymal stem cells (MSCs) in tissue engineering and regenerative medicine is determined by their unique biological, mechanical, and physicochemical characteristics, which are yet to be fully explored. Cell membrane mechanics, for example, has been shown to critically influence MSC differentiation. In this study, we used laser optical tweezers to measure the membrane mechanics of human MSCs and terminally differentiated fibroblasts by extracting tethers from the outer cell membrane. The average tether lengths were 10.6+/-1.1 microm (hMSC) and 3.0+/-0.5 microm (fibroblasts). The tether extraction force did not increase during tether formation, which suggests existence of a membrane reservoir intended to buffer membrane tension fluctuations. Cytoskeleton disruption resulted in a fourfold tether length increase in fibroblasts but had no effect in hMSCs, indicating weak association between the cell membrane and hMSC actin cytoskeleton. Cholesterol depletion, known to decrease lipid bilayer stiffness, caused an increase in the tether length both in fibroblasts and hMSCs, as does the treatment of cells with DMSO. We postulate that whereas fibroblasts use both the membrane rigidity and membrane-cytoskeleton association to regulate their membrane reservoir, hMSC cytoskeleton has only a minor impact on stem cell membrane mechanics.  相似文献   

6.
BACKGROUND: The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS: Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS: Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION: Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.  相似文献   

7.
Swelling of hepatocytes and other epithelia activates volume-sensitive ion channels that facilitate fluid and electrolyte efflux to restore cell volume, but the responsible signaling pathways are incompletely defined. Previous work in model HTC rat hepatoma cells has indicated that swelling elicits ATP release, which stimulates P2 receptors and activates Cl(-) channels, and that this mechanism is essential for hepatocellular volume recovery. Since P2 receptors are generally coupled to Ca(2+) signaling pathways, we determined whether hepatocellular swelling affected cytosolic [Ca(2+)], and if this involved a purinergic mechanism. Exposure of HTC cells to hypotonic media evoked an increase in cytosolic [Ca(2+)], which was followed by activation of K(+) and Cl(-) currents. Maneuvers that interfered with swelling-induced increases in cytosolic [Ca(2+)], including extracellular Ca(2+) removal and intracellular Ca(2+) store depletion with thapsigargin, inhibited activation of membrane currents and volume recovery. However, the swelling-induced increases in cytosolic [Ca(2+)] were unaffected by either extracellular ATP depletion with apyrase or blockade of P2 receptors with suramin. These findings indicate that swelling elicits an increase in hepatocellular Ca(2+), which is essential for ion channel activation and volume recovery, but that this increase does not stem from activation of volume-sensitive P2 receptors. Collectively, these observations imply that regulatory responses to hepatocellular swelling involve a dual requirement for a purinergic-independent Ca(2+) signaling cascade and a Ca(2+)-independent purinergic signaling pathway.  相似文献   

8.
The maintenance of cell volume homeostasis is critical for preventing pathological cell swelling that may lead to severe cellular dysfunction or cell death. Our earlier studies have shown that volume-regulated anion channels that play a major role in the regulation of cell volume are facilitated by a decrease in cellular cholesterol suggesting that cholesterol depletion should also facilitate regulatory volume decrease (RVD), the ability of cells to recover from hypotonic swelling. In this study, we test this hypothesis using a novel methodology developed to measure changes in cell volume using a microfluidics chamber. Our data show that cholesterol depletion of Chinese Hamster Ovary (CHO) significantly facilitates the recovery process, as is apparent from a faster onset of the RVD (162±10 s. vs. 114±5 s. in control and cholesterol depleted cells respectively) and a higher degree of volume recovery after 10 min of the hypotonic challenge (41%±6% vs. 65%±6% in control and cholesterol depleted cells respectively). In contrast, enriching cells with cholesterol had no effect on the RVD process. We also show here that similarly to our previous observations in endothelial cells, cholesterol depletion significantly increases the stiffness of CHO cells suggesting that facilitation of RVD may be associated with cell stiffening. Furthermore, we also show that increasing cell stiffness by stabilizing F-actin with jasplakinolide also facilitates RVD development. We propose that cell stiffening enhances cell mechano-sensitivity, which in turn facilitates the RVD process.  相似文献   

9.
We tested the hypothesis that mechanical tension in thecytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, weeither cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed thatthere was preexisting CSK tension in these cells and that the actinlattice was a primary stress-bearing component of the CSK. Second, todetermine the extent to which that preexisting CSK tension could altercell deformability, we developed a stretchable cell culture membranesystem to impose a rapid mechanical distension (and presumably a rapidincrease in CSK tension) on adherent endothelial cells. Altered celldeformability was quantitated as the shear stiffness measured bymagnetic twisting cytometry. When membrane strain increased 2.5 or 5%,the cell stiffness increased 15 and 30%, respectively. Disruption ofactin lattice with Cyto D abolished this stretch-induced increase instiffness, demonstrating that the increased stiffness depended on theintegrity of the actin CSK. Permeabilizing the cells with saponin andwashing away ATP and Ca2+ did notinhibit the stretch-induced stiffening of the cell. These resultssuggest that the stretch-induced stiffening was primarily due to thedirect mechanical changes in the forces distending the CSK but not toATP- or Ca2+-dependent processes.Taken together, these results suggest preexisting CSK tension is amajor determinant of cell deformability in adherent endothelial cells.

  相似文献   

10.
Cell volume recovery in response to swelling requires reorganization of the cytoskeleton and fluid efflux. We have previously shown that electrolyte and fluid efflux via K+ and Cl- channels is controlled by swelling-induced activation of phospholipase Cgamma (PLCgamma). Recently, integrin engagement has been suggested to trigger responses to swelling through activation of Rho family GTPases and Src kinases. Because both PLCgamma and Rho GTPases can be regulated by Src during integrin-mediated cytoskeletal reorganization, we sought to identify swelling-induced Src effectors. Upon hypotonic challenge, Src was rapidly activated in transient plasma membrane protrusions, where it colocalized with Vav, an activator of Rho GTPases. Inhibition of Src with PP2 attenuated phosphorylation of Vav. PP2 also attenuated phosphorylation of PLCgamma, and inhibited swelling-mediated activation of K+ and Cl- channels and cell volume recovery. These findings suggest that swelling-induced Src regulates cytoskeletal dynamics, through Vav, and fluid efflux, through PLCgamma, and thus can coordinate structural reorganization with fluid balance to maintain cellular integrity.  相似文献   

11.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

12.
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer''s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.  相似文献   

13.
The contractile ring and the cell cortex generate force to divide the cell while maintaining symmetrical shape. This requires temporal and spatial regulation of the actin cytoskeleton at these areas. We force-expressed misregulated versions of actin-binding proteins, tropomyosin and caldesmon, into cells and analyzed their effects on cell division. Cells expressing proteins that increase actomyosin ATPase, such as human tropomyosin chimera (hTM5/3), significantly speed up division, whereas cells expressing proteins that inhibit actomyosin, such as caldesmon mutants defective in Ca(2+)/calmodulin binding (CaD39-AB) and in cdk1 phosphorylation sites (CaD39-6F), divide slowly. hTM5 and hTM5/3-expressing cells lift one daughter cell off the substrate and twist. Furthermore, CaD39-AB- and CaD39-6F-expressing cells are sensitive to hypotonic swelling and show severe blebbing during division, whereas hTM5/3-expressing cells are resistant to hypotonic swelling and produce membrane bulges. These results support a model where Ca(2+)/calmodulin and cdk1 dynamically control caldesmon inhibition of tropomyosin-activated actomyosin to regulate division speed and to suppress membrane blebs.  相似文献   

14.
The highly related ERM (Ezrin, Radixin, Moesin) proteins provide a regulated linkage between the membrane and the underlying actin cytoskeleton. They also provide a platform for the transmission of signals in responses to extracellular cues. Studies in different model organisms and in cultured cells have highlighted the importance of ERM proteins in the generation and maintenance of specific domains of the plasma membrane. A central question is how do ERM proteins coordinate actin filament organization and membrane protein transport/stability with signal transduction pathways to build up complex structures? Through their interaction with numerous partners including membrane proteins, actin cytoskeleton and signaling molecules, ERM proteins have the ability to organize multiprotein complexes in specific cellular compartments. Likewise, ERM proteins participate in diverse functions including cell morphogenesis, endocytosis/exocytosis, adhesion and migration. This review focuses on aspects still poorly understood related to the function of ERM proteins in epithelial cell adhesion and migration.Key words: epithelial cells, membrane-cytoskeleton interface, morphogenesis, ERM proteins, cell adhesion  相似文献   

15.
Cross bonding and stiffening of the red cell membrane   总被引:1,自引:0,他引:1  
Cross bonding and stiffening of the human red cell membrane was studied using treatments with SH, amino, and carboxyl reagents, oxidizing and denaturing treatments and acidification. Membrane cross bonding was initiated when, after red cell treatment, opposite areas of the cytoplasmic face of the red cell membrane were brought into contact by cell shrinking. Membrane cross bonding was detected by light microscopy when this contact persisted upon swelling the cells in a hypotonic medium. Membrane stiffening was recorded as a decrease in elongation of red cells in the shear field of a viscous dextran solution. No correlation was found between membrane cross bonding and membrane stiffening. The results are explained by the existence of two modifications of spectrin, type I causing solely membrane stiffening, type II causing membrane cross bonding as well as membrane stiffening. The amino and carboxyl reagents caused only type I modification. The other treatments caused both types of modification although with varying proportions. The results support the previously suggested mechanism of membrane cross bonding which involves a rearrangement of spectrin similar to denaturation by heat or urea, a decrease in associations within the membrane skeletal network, and a lateral aggregation of membrane proteins. These changes are proposed to occur by the type II modification. The data further substantiate the membrane stiffening effect of inter- and intra-molecular cross linking of spectrin which is identified with the type I modification. Finally, hypotheses are presented concerning the mechanism of membrane stiffening due to type II modifications of spectrin.  相似文献   

16.
We investigate the mechanical strength of adhesion and the dynamics of detachment of the membrane from the cytoskeleton of red blood cells (RBCs). Using hydrodynamical flows, we extract membrane tethers from RBCs locally attached to the tip of a microneedle. We monitor their extrusion and retraction dynamics versus flow velocity (i.e., extrusion force) over successive extrusion-retraction cycles. Membrane tether extrusion is carried out on healthy RBCs and ATP-depleted or -inhibited RBCs. For healthy RBCs, extrusion is slow, constant in velocity, and reproducible through several extrusion-retraction cycles. For ATP-depleted or -inhibited cells, extrusion dynamics exhibit an aging phenomenon through extrusion-retraction cycles: because the extruded membrane is not able to retract properly onto the cell body, each subsequent extrusion exhibits a loss of resistance to tether growth over the tether length extruded at the previous cycle. In contrast, the additionally extruded tether length follows healthy dynamics. The extrusion velocity L depends on the extrusion force f according to a nonlinear fashion. We interpret this result with a model that includes the dynamical feature of membrane-cytoskeleton association. Tether extrusion leads to a radial membrane flow from the cell body toward the tether. In a distal permeation regime, the flow passes through the integral proteins bound to the cytoskeleton without affecting their binding dynamics. In a proximal sliding regime, where membrane radial velocity is higher, integral proteins can be torn out, leading to the sliding of the membrane over the cytoskeleton. Extrusion dynamics are governed by the more dissipative permeation regime: this leads to an increase of the membrane tension and a narrowing of the tether, which explains the power law behavior of L(f). Our main result is that ATP is necessary for the extruded membrane to retract onto the cell body. Under ATP depletion or inhibition conditions, the aging of the RBC after extrusion is interpreted as a perturbation of membrane-cytoskeleton linkage dynamics.  相似文献   

17.
Cell spreading and motility require the extension of the plasma membrane in association with the assembly of actin. In vitro, extension must overcome resistance from tension within the plasma membrane. We report here that the addition of either amphiphilic compounds or fluorescent lipids that expanded the plasma membrane increased the rate of cell spreading and lamellipodial extension, stimulated new lamellipodial extensions, and caused a decrease in the apparent membrane tension. Further, in PDGF-stimulated motility, the increase in the lamellipodial extension rate was associated with a decrease in the apparent membrane tension and decreased membrane-cytoskeleton adhesion through phosphatidylinositol diphosphate hydrolysis. Conversely, when membrane tension was increased by osmotically swelling cells, the extension rate decreased. Therefore, we suggest that the lamellipodial extension process can be activated by a physical signal (perhaps secondarily), and the rate of extension is directly dependent upon the tension in the plasma membrane. Quantitative analysis shows that the lamellipodial extension rate is inversely correlated with the apparent membrane tension. These studies describe a physical chemical mechanism involving changes in membrane-cytoskeleton adhesion through phosphatidylinositol 4,5-biphosphate-protein interactions for modulating and stimulating the biochemical processes that power lamellipodial extension.  相似文献   

18.
By using magnetic bead microrheology we study the effect of inflammatory agents and toxins on the viscoelastic moduli of endothelial cell plasma membranes in real time. Viscoelastic response curves were acquired by applying short force pulses of ~500 pN to fibronectin-coated magnetic beads attached to the surface membrane of endothelial cells. Upon addition of thrombin, a rapid stiffening of the membrane was observed within 5 s, followed by recovery of the initial deformability within 2 min. By using specific inhibitors, two known pathways by which thrombin induces actin reorganization in endothelial cells, namely activation of Ca2+-calmodulin-dependent myosin light chain kinase and stimulation of Rho/Rho-kinase, were excluded as possible causes of the stiffening effect. Interestingly, the cytotoxic necrotizing factor of Escherichia coli, a toxin which, in addition to Rho, activates the GTPases Rac and CDC42Hs, also induced a dramatic stiffening effect, suggesting that the stiffening may be mediated through a Rac- or Cdc42Hs-dependent pathway. This work demonstrates that magnetic bead microrheometry is not only a powerful tool to determine the absolute viscoelastic moduli of the composite cell plasma membrane, but also a valuable tool to study in real time the effect of drugs or toxins on the viscoelastic parameters of the plasma membrane.  相似文献   

19.
The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress.  相似文献   

20.
Cell swelling induces peptide exocytosis using unique signaling pathway. Hyposmotic-induced secretion in normal cells is not mediated by specific receptors, is independent from extra and intracellular Ca(2+), sodium and potassium channels activity, prostaglandins, leukotriens, does not involve cytoskeleton, cAMP generation, phospholipase A(2), G proteins, protein kinase C. It is promoted by swelling of the secretory vesicles. Resistance to endogenous inhibitors is frequent attribute of this type of secretion. Swelling-induced secretion involves also secretory vesicles not involved in conventional stimulation. Hyposmosis-induced insulin secretion is more sensitive to high cellular cholesterol than conventional one suggesting substantial difference between mechanisms. Participation of sequential exocytosis as dominating mechanism in swelling-induced exocytosis is hypothesized. Signaling and response in tumor cells often differs from native cells and varies markedly between cell lines. Pathogenetic implications: cell swelling could be involved in alcohol induced hypoglycemia in diabetic patients and release of peptides from pituitary and neurons. Swelling-induced products could be mediators of ischemic preconditioning involved also in protection of diabetic heart. Swelling-induced exocytosis is an ancient mechanism generally present in cells; in cells engaged in water and salt regulation is covered by specific response mediated by specific signaling. Disturbance of specific response leads to swelling-induced - inappropriate secretion of antidiuretic hormone - SIADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号