首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.  相似文献   

2.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

3.
During the last few decades, phytoremediation process has attracted much attention because of the growing concerns about the deteriorating quality of soil caused by anthropogenic activities. Here, a tandem phytoremediation/biorefinery process was proposed as a way to turn phytoremediation into a viable commercial method by producing valuable chemicals in addition to cleaned soil. Two agricultural plants (Sinapis alba and Helianthus annuus) were grown in moderately contaminated soil with ca. 100 ppm of Ni and further degraded by a fungal lignin degrader—Phanerochaete chrysosporium. Several parameters have been studied, including the viability of plants, biomass yield, and their accumulating and remediating potentials. Further, downstream processing showed that up to 80% of Ni can be easily extracted from contaminated biomass by aqueous extraction at mild conditions. Finally, it was demonstrated that the growth of plants on the contaminated soil could be degraded by P. chrysosporium, and the effect of nickel and biomass pretreatment on the solid-state fermentation was studied. The proposed and studied methodology in this work could pave the way for successful commercialization of the phytoremediation process in the near future.  相似文献   

4.
The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.  相似文献   

5.
Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.  相似文献   

6.
Field-collected, young plants of Ni hyperaccumulator Stackhousia tryonii, grown in a glasshouse for 20 weeks, were exposed to low- (available Ni concentration in the native serpentine soil, i.e. 60 microg g(-1) dry soil) and high- (external application of 1000 ppm) Ni concentrations in the substrate. Nickel concentration in the freeze-dried leaf tissues increased from 3700 microg g(-1) to 13 700 microg g(-1) with soil Ni supplementation, of which >60% was extracted with dilute acid (0.025 M HCl). Nickel supplementation also elicited a 575%, 211%, and 37% increase in the final concentrations of oxalic, citric, and malic acids, respectively, in leaf tissues. Malic acid was the dominant organic acid, followed by citric and oxalic acids. The molar ratio of Ni to malic acid was 1.0, consistent with a role for malate as a ligand for Ni in hyperaccumulating plants, supporting detoxification/transport and storage of this heavy metal in S. tryonii. The total amino acid concentrations in the xylem sap did not change with Ni supplementation (21.7+/-3.7 mM and 17.9+/-5 mM, respectively, for low- and high-nickel-treated plants). Glutamine was the major amino acid in both the low- and high-Ni-treated plants. The concentration of glutamine decreased by >60%, with a corresponding increase in alanine, aspartic acid, and glutamic acid, on exposure to high Ni. A role of amino acids in Ni complexation and transport in S. tryonii is not immediately apparent.  相似文献   

7.
Experiments designed to determine the compatibility of commercial Bacillus thuringiensis and chemical insecticides showed that fenitrothion (2 ppm active ingredient), SBP 1382, and Gardona® (1 ppm active ingredient) inhibited bacterial replication after 2 hr growth time in liquid broth culture. Spore germination and the size of the parasporal crystals were greatly reduced by high concentrations (1000 ppm) of these insecticide formulations most likely due to the presence of toxic emulsifiers and other additives in the emulsifiable concentrates. The commonly used emulsifiers, Atlox and Triton X-100, at 1000 ppm totally inhibited germination and reduced crystal size. Bacillus thuringiensis apparently metabolized fenitrothion and SBP 1382 during 2 hr of exposure in the cultures containing 10 and 100 ppm, respectively, of these insecticides.Orthene® at 10,000 ppm for 2 hr had no significant inhibiting effect on the bacteria replication. Spore germination and crystal size were not affected by this concentration. Orthene is considered a potentially effective chemical insecticide in the integrated control of susceptible insect pests if used in concentrations low enough to spare natural control agents of the target species.  相似文献   

8.
Contamination of surface soils with lead (Pb) is a global concern due to the release of hazardous materials containing the metal element. In order to explore ways to remediate contaminated soils with less impact on environment and costs, this study aimed at screening ornamental plant species exposed to Pb gradient in spiked soils for Pb phytoextraction. Twenty-one ornamental plant species that currently grow in Pakistan, were selected to assess their potential for Pb accumulation. Pot experiments were conducted to evaluate the accumulative properties of the different plant species in unspiked control (Pb = 0) and spiked soils with different levels of Pb at 500, 1000, 1500 and 2000 mg Pb kg?1 of soil. Biotranslocation factor (TF), Enrichment factor (EF) and Bioconcentration factor (CF) were calculated to assess the phytoremediation potential of tested plant species after seven weeks of exposure. Out of 21 plant species, Pelargonium hortorum and Mesembryanthemum criniflorum performed better and accumulated more than 1000 mg Pb kg?1 of shoot dry biomass when they were grown in 500, 1000 and 1500 mg Pb kg?1 contaminated soils. Both plants had no significant (P < 0.05) variation in the total dry biomass with increasing soil Pb concentration indicating a high tolerance to Pb. Considering the capacity of Pb accumulation, total dry biomass, TF, EF &; CF indices, Pelargonium hortorum and Mesembryanthemum criniflorum could be considered as Pb hyperaccumulators and could have the potential to be used in phytoremediation.  相似文献   

9.
The Pb-accumulator Sedum alfredii is a good phytoremediation material, and widely used in the phytoremediation research of soils contaminated with Pb. The root exudates from it may be playing a significant role in the process of phytoremediation. In this study, the metabonomics method which based on gas chromatography–mass spectrometry (GC–MS) and pattern recognition analysis was used to identify the remarkable root exudates from S. alfredii under different Pb stresses, including exposure concentrations (0, 10, 50, 200 and 1000?µmol/L) and times (4 and 8 days). And batch extraction experiments were used to verify the roles of these remarkable root exudates. According to the results, 11 metabolites were considered as the remarkable metabolites. Oxalic acid, galactonic acid and glyceric acid can remove Pb in soil, and the removal effect was: oxalic acid?>?galactonic acid?>?glyceric acid. Xylose, glucose and maltose have no removal effect for Pb in soil.  相似文献   

10.
The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.  相似文献   

11.
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g?1 dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.  相似文献   

12.
We investigated the concentration of Aluminium (Al), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Zinc (Zn) in the root and aboveground organs of four halophyte species (Salicornia europaea, Suaeda maritima, Salsola soda and Halimione portulacoides), as well as in the soil from maritime and inland saline areas. The aim of our research was to evaluate the capability of some halophyte species to absorb different heavy metals and to detect differentiation of heavy metal accumulation within populations from inland and maritime saline areas. Generally, the plant roots had significantly higher concentrations of metals when compared to stems and leaves. Zinc was the only metal with concentrations significantly higher in the leaves than in the root and stem. Populations from maritime saline areas had higher trace root and stem metal concentrations than populations from inland saline areas. Excepting zinc, populations from inland saline areas had higher heavy metal concentrations in the leaves. The factors that affected metal accumulation by halophytes included the percentage of salt in the soil. We also discuss the potential use of these halophytes in phytoremediation.  相似文献   

13.
In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg?1) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg?1) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.  相似文献   

14.
The accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. A field survey of higher terrestrial plants growing on a metalliferous site of the Iranian arid mountain in Isfahan was conducted to identify species accumulating exceptionally large concentrations of Zn and Ni in shoots and roots. Plant samples were collected from Irankoh areas near the Bama Pb and Zn mine. Sampling was carried out in Spring 2004 and analyzed for DTPA (Diethylene triamine pentaacetic acid) extractable Zn and Ni by atomic absorption spectrophotometry. Mean total and available Zn in the studied soils were 259.7 μgg?1 and 5.067 μgg?1, respectively. Soil total and available Ni were relatively low (58.9 μgg?1 and 0.143 μgg?1 respectively). Zinc concentrations were considerably high in shoots of Stachys inflate, Ebenus stellata, and Astragalus glaucanthus (556.88, 508.8, and 449.53 μgg?1, respectively). Nickel concentrations were markedly high in shoots of Teucrium polium, Alyssum bracteatum, and Ebenus stellata (13.21, 10.98, and 8.84 μgg?1, respectively). Zinc translocation factor (TF or shoot/root concentration ratio) was higher than Ni TF in most plant species. Zinc and Ni enrichment factors and shoot/root concentration ratios were also significantly high in Stachys inflate, Ebenus stellata, Astragalus glaucanthus Teucrium polium, Stipa barbata, Bromus tectorum, and Alyssum bracteatum. Results suggest that these plants could be good candidates for use in the revegetation and phytoremediation of Zn and Ni contaminated lands in arid regions.  相似文献   

15.
The study was done to investigate the ability of three semi-arid plant species viz. Acacia tortilis, Cassia fistula and Prosopis juliflora to adapt to fluoride (F) stress. Here we examined the changes in activities of chlorophyll a fluorescence and photosynthetic pigment concentration during early growth of these plants. One month old plants were treated with 10, 20, and 50 mg kg?1 F in soilrite. We did not observe any major change in photosynthetic performance of these plants during early growth. This was revealed by ETR, ETRmax, PPFD-sat and ΔF/Fm′-sat values which were higher in these plants. The decrease in chl a, chl b and total chl concentrations were significant only at 5 days. For most of the parameters, C. fistula was found to be more sensitive to F stress and P. juliflora showed least damage from F. The lesser inhibition in the parameters reflected the F tolerant nature of these plants with respect to photosynthesis. This opens the possibility of potential use of these species for treatment of F contaminated soil and water.  相似文献   

16.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

17.
In this study, three concentrations (250, 500, and 1000 ppm) of abamectin 2% suspension concentration (SC) were used as cucumber seeds treatment. The seeds were treated with abamectin to reduce nematodes reproduction and their ability to penetrate the roots, then seed germination and plant growth were observed. All the concentrations didn’t negatively affect seeds germination wherever the germination percent reached 80% at the concentration (1000 ppm) after 20 days of sowing. The effect of abamectin on root-knot nematode was studied by recording numbers of nematodes in 100 g/soil, numbers of the galls, egg mass on the root, and the nematode reproduction factor. All concentrations significantly affected the nematode reproduction parameters compared to control. Abamectin at (500 ppm) was the most effective concentration on reducing nematodes parameters, i.e., 26.57, 38.83, 47.40 %, and 3.15 for the above-mentioned parameters, respectively at the end of experimint. No significant difference between 500 ppm and 1000 ppm. We recommended using the abamectin in (500 ppm) concentration as a seed application to control Meloidogyne incognita in cucumber plants under greenhouse conditions to reduce its environmental toxic effect.  相似文献   

18.
The phytotoxicity due to nickel (Ni) and its accumulation in castor (Ricinus communis L.) plant of Euphorbiaceae family resulting from its addition from low to very high levels to a swell-shrink clayey soil (Haplustert) was studied in a pot culture experiment. Nine levels of Ni (0, 10, 40, 80, 120, 160, 180, 200, 250 mg Ni kg(-1) soil) were applied. Crop was harvested at 45 days after sowing. At the higher Ni levels, beyond 200 mg Ni kg(-1) soil, reduced growth symptom was recorded. The concentration of Ni in plant parts increased with increasing dose of applied Ni. Nickel concentration in castor root ranged from traces (control) to 455 mg kg(-1) and was directly related to soil Ni concentration. At 200 mg Ni kg(-1) soil, dry matter yield of castor reduced to 10% of control plant. Significant changes were observed in the roots of castor treated with higher levels of Ni against control. The roots treated with Ni showed a decrease in number of cells in the cortex region. It also appeared that the cortex region consisted of elongated parenchymatous cells instead of the normal parenchymatous tissue as in the control plant. Regarding Ni accumulation capacity, castor plant was recorded as an accumulator (alpha = 0.11 and beta = 1.10). A laboratory study was also conducted in the experimental soil to know the different operationally defined fractions of Ni, which control the availability of Ni to castor. Different fractions of Ni present in this soil followed this order: Residual > Fe-Mn oxides > carbonate > organic > exchangeable > water soluble. Overall results depict that castor is a promising species which can be used as a potential plant for phytoremediation of contaminated soils and to improve soil quality and provide economical benefits.  相似文献   

19.
Metals contaminate the soil when present in high concentrations causing soil and ultimately environmental pollution. “Phytoremediation” is the use of plants to remove pollutants from contaminated environments. Plants tightly regulate their internal metal concentrations in a process called “metal homeostasis”. Some species have evolved extreme tolerance and accumulation of Zn, Cd and Ni as a way to adapt to exposure to these metals. Such traits are beneficial for phytoremediation, however, most natural metal hyperaccumulator species are not adapted to agriculture and have low yields. A wealth of knowledge has been generated regarding metal homeostasis in plants, including hyperaccumulators, which can be used in phytoremediation of Zn, Cd and Ni. In this review, we describe the current state of Zn, Cd and Ni physiology in plants and the underlying molecular mechanisms. The ways to efficiently utilize this information in designing high biomass metal accumulator plants are discussed. The potential and application of genetic modification has extended our understanding about the mechanisms in plants dealing with the metal environment and has paved the way to achieve the goal of understanding metal physiology and to apply the knowledge for the containment and clean up of metal contaminated soils.  相似文献   

20.
An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9–10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号