首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaching of metals due to enhanced mobility during ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. This study was conducted to determine phytoextraction efficiency of Chenopodium album L. for Pb and EDTA-assisted (1.5, 3, and 9 mmol kg?1) phytoextraction and potential for leaching of Pb. The results demonstrated that BCFshoot (bioconcentration factor) was relatively higher than the BCFroot. Translocation factor in the shoot was higher than the roots. Thus, plant species would be applicable for Pb phytoextraction. EDTA enhanced translocation of Pb from roots to shoots. Lead content in the plant parts was maximum in the shoot and root of 9EDTA and 3EDTA, respectively. However, there was no significant difference between 3EDTA and 9EDTA. Lead concentration in the plant parts increased significantly from vegetative stage into flowering stage. Lead content taken up by the plant was lowest when EDTA was applied in a single dose. Therefore, application of EDTA in several increments rather than a single split reduced the leaching risk. Totally, optimum phytoextraction was observed when 3 mmol kg?1 EDTA was added in triple dosage 60 days after the plant cultivation under triple application mode. The results indicated the plant has the potential for Pb phytoextraction, but it should not be used unless the biomass containing such accumulated metal is removed for disposal. Significant improvement over current ETDA-assisted phytoextraction of Pb may be possible but should be implemented cautiously because of environmental risk.  相似文献   

2.
Urban garden soils are a potential repository of heavy metal pollution, resulting from either anthropogenic or geogenic origin. The efficiency of phytoextraction was compared on two garden soils with the same texture and topsoil Pb concentration (170 mg kg?1) but not the same origin: one geogenic, the other anthropogenic. Two varieties of Brassica juncea were tested with citric acid (25 mmol kg?1) or ethylenediaminetetraacetic acid (EDTA, 2.5 mmol kg?1). Geogenic Pb was shown to be two times less available than anthropogenic Pb, as a result of which the phytoextraction efficiency was reduced by 59%. Pb mobility in the soil was solely enhanced with EDTA, which increased the Pb concentration in shoots of B. juncea by between 14 and 26 times in comparison with the control. The highest Pb concentration in shoots still remained low, however (i.e., 45 mg kg?1 dry weight). Regardless of the chelates introduced, B. juncea 426308 accumulated roughly twice as much lead as B. juncea 211000, but only for the anthropogenic contaminated soil. Under these conditions, the amount of Pb accumulated by B. juncea (even when assisted by EDTA) was not high enough to envision achieving soil clean-up within a reasonable time frame.  相似文献   

3.
The aim of this study was to assess EDTA-assisted Pb and Cd phytoextraction potential of locally grown Pelargonium hortorum and Pelargonium zonale. Plants were exposed to different levels of Pb (0–1500?mg kg?1) and Cd (0–150?mg kg?1) in the absence or presence of EDTA (0–5?mmol kg?1). P. hortorum and P. zonale accumulated 50.9% and 42.2% higher amount of Pb in shoots at 1500?mg kg?1 Pb upon addition of 5?mmol kg?1 EDTA. Plant dry biomass decreased 46.8% and 64.3% for P. hortorum and P. zonale, respectively at the combination of 1500?mg kg?1 Pb and 5?mmol kg?1 EDTA. In Cd and EDTA-treated groups, P. hortorum and P. zonale accumulated 2.7 and 1.6-folds more Cd in shoots at 4 and 2?mmol kg?1 EDTA, respectively, in 150?mg Cd kg?1 treatment. Plant dry biomass of P. hortorum and P. zonale was reduced by 46.3% and 71.3%, respectively, in soil having 150?mg Cd kg?1 combined with 5?mmol kg?1 EDTA. Translocation factor and enrichment factor of both plant cultivars at all treatment levels were >1. Overall, the performance of P. hortorum was better than that of P. zonale for EDTA-assisted phytoextraction of Pb and Cd.  相似文献   

4.
The application of chelating agents for phytoextraction has demonstrated that it is an efficient method to activate heavy metals in polluted soil. We conducted pot experiments using soybean, which has been considered an indicator plant, to study the effects of EDTA and EDDS on heavy metals’ activation, and on the soybean. The study results indicated that EDDS decreased the chlorophyll content of the leaves and increased the malondialdehyde (MDA) content of the soybean. EDTA also decreased the chlorophyll content of the leaves. EDDS had a strong influence on activating Cu (2583-8900-fold) and Zn. The addition of 5 mmol kg?1 of EDDS markedly increased the uptake of metals. Compared with the control, EDDS increased the Cu uptake (100-205-fold). EDTA greatly increased the activation of heavy metals; it also increased Cu uptake in a concentration-dependent manner. EDTA also increased the biological concentration factor (BCF) and the transfer factor (TF) in a concentration-dependent manner. The BCF and the TF reached maximum levels when 5 mmol kg?1 EDDS was applied to the pots.  相似文献   

5.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

6.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

7.
The aim of this research was to identify adapted native plant species with potential for use in phytoremediation of a metalliferous mine tailings heap in Guerrero, Mexico. Physico-chemical characterization, total, DTPA-extractable and fractionation of metals in rhizospheric and non-rhizopheric samples were carried out to gain information about their potential risks. Metal concentrations in plant and bioconcentration factors (BCF) were also determined. Organic matter (OM) and total N contents were higher in the rhizospheric samples, which could improve the conditions for plant establishment. Total Cu, Zn, and Pb concentration were above those for normal soils. The highest metals concentration was found in the residual and organic fractions. Eleven plant species were recorded at the site; three behaved as metal accumulator plants: Gnaphalium chartaceum (accumulator of Cu, Mn, Zn, and Pb), Wigandia urens and Senecio salignus (1027 and 2477 mg kg?1 of Zn). These species and Brickellia sp. presented high Pb-BCF; they may be suitable for metals phytoextraction. Seven species behaved as excluder plants; Guardiola tulocarpus, Juniperus flaccida, and Ficus goldmanii, presented low BCFs. These species are well suited to cope with the toxic conditions, and they could be propagated for revegetation and stabilization of these residues and to decrease metal bioavailability.  相似文献   

8.
Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg?1 of NiCl2, 100 mg kg?1 of CdCl2, and 150 mg kg?1 of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.  相似文献   

9.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

10.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

11.
Effect of high boron application on boron content and growth of melons   总被引:4,自引:0,他引:4  
Synthetic chelates, such as ethylene diamine tetraacetic acid (EDTA), have been shown to enhance phytoextraction of Pb from contaminated soil but also cause leaching of heavy metal-chelate complexes, posing a groundwater contamination threat. In a soil column study, we examined the effect of EDTA and a biodegradable chelate [S,S] isomere of ethylene diamine disuccinate ([S,S]-EDDS), newly introduced in phytoextraction research, on the uptake of Pb by the Chinese cabbage (Brassica rapa) and Pb leaching through the soil profile. Soil water sorption characteristics were modified by acrylamide hydrogel. The addition of 0.1 and 0.2% (w/w) of hydrogel amendments increased soil field water capacity from initial 24.6% to 28.5% and 31.3%, respectively. The additions of 2.5, 5 and 10 mmol EDTA kg–1 soil were more effective in enhancing Pb plant uptake than comparable [S,S]-EDDS treatments, but caused (as also 10 mmol kg–1 [S,S]-EDDS additions) unacceptably high Pb leaching in treatments with any soil water sorption conditions tested. The most efficient level of EDTA (10 mmol kg–1) enhanced plant Pb uptake by 97 times compared to the control. Shoots Pb concentrations reached 500 mg kg–1 of dry biomass. However, in this treatment 36.2% of total initial Pb was leached from the soil during the first four weeks after chelate addition. Hydrogel soil amendments were more effective in treatments with [S,S]-EDDS than with EDTA. In treatments with 10 mmol kg–1[S,S]-EDDS hydrogel amended soils, plant Pb uptake was significantly reduced and Pb leach was as high as 44.2% of total initial soil Pb. At lower [S,S]-EDDS concentrations, the effect of hydrogel soil amendment on Pb leaching was the opposite. The addition of 5 mmol kg–1 [S,S]-EDDS soil to the soil amended with 0.2% hydrogel increased Pb uptake by 18 times while only 0.2% of total initial Pb was leached. In all treatments, the concentrations of Pb in dry plant biomass were far from concentrations required for efficient soil remediation within a reasonable time span.  相似文献   

12.
A pot trial using Glomus mosseae along with EDTA (ethylenediaminetetraacetic acid) was conducted for the phytoextraction of cadmium (Cd) by celery (Apium graveolens Linn.) plants from soil artificially contaminated with Cd under glass house conditions. The experiment is a 2 × 2 × 4 factorial design with two levels of G. mosseae inoculations (G. mosseae inoculated and uninoculated), two EDTA concentrations (without and with 2.5 mmol kg?1 soil EDTA) and four Cd concentrations (0, 5, 10, and 20 mg kg?1 soil). The results indicate the formation of an effective symbiosis between G. mosseae and celery in the contaminated soil. However, an increase in Cd input level and EDTA addition showed strong phytotoxic effect on celery plants and G. mosseae, as a considerable decrease in the frequency of root colonization and spore density was noticed. However, the plants were able to withstand the stressed condition due to the benefits provided by G. mosseae through increased P accumulation, chlorophyll content, and plant growth, resulting in an increase in Cd accumulation, which was good enough for the phytoextraction purpose. Thus, celery plants inoculated with G. mosseae and later supplemented with EDTA could be an effective and potentially suitable practice for the remediation of Cd-contaminated sites.  相似文献   

13.
Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg?1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg?1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.  相似文献   

14.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

15.
Contamination of surface soils with lead (Pb) is a global concern due to the release of hazardous materials containing the metal element. In order to explore ways to remediate contaminated soils with less impact on environment and costs, this study aimed at screening ornamental plant species exposed to Pb gradient in spiked soils for Pb phytoextraction. Twenty-one ornamental plant species that currently grow in Pakistan, were selected to assess their potential for Pb accumulation. Pot experiments were conducted to evaluate the accumulative properties of the different plant species in unspiked control (Pb = 0) and spiked soils with different levels of Pb at 500, 1000, 1500 and 2000 mg Pb kg?1 of soil. Biotranslocation factor (TF), Enrichment factor (EF) and Bioconcentration factor (CF) were calculated to assess the phytoremediation potential of tested plant species after seven weeks of exposure. Out of 21 plant species, Pelargonium hortorum and Mesembryanthemum criniflorum performed better and accumulated more than 1000 mg Pb kg?1 of shoot dry biomass when they were grown in 500, 1000 and 1500 mg Pb kg?1 contaminated soils. Both plants had no significant (P < 0.05) variation in the total dry biomass with increasing soil Pb concentration indicating a high tolerance to Pb. Considering the capacity of Pb accumulation, total dry biomass, TF, EF &; CF indices, Pelargonium hortorum and Mesembryanthemum criniflorum could be considered as Pb hyperaccumulators and could have the potential to be used in phytoremediation.  相似文献   

16.
Phytoextraction has been identified as one of the most propitious methods of phytoremediation. This pot experiment were treated with varying amounts of (ethylenediamine triacetic acid) EDTA 3–15, (Nitriloacetic acid) NTA 3–10, (Ammonium citrate) NH4 citrate 10 – 25 mmol and one mg kg–1Cd, filled with 5 kg soil. The addition of chelators significantly increased Cd concentration in soil and plant. The results showed that maximum Cd uptake was noted under root, shoot and leaf of castor plant tissue (2.26, 1.54, and 0.72 mg kg–1) under EDTA 15, NTA 10, and NH4 citrate 25 mmol treatments respectively, and in soil 1.08, 1.06 and 0.52 mg kg–1 pot–1 under NH4 citrate 25, NTA 10 and EDTA 15 mmol treatments respectively, as against to control (p < 0.05). Additions of chelators reduction biomass under the EDTA 15 mmol as compared to other treatments, However, Bioconcentration factor (BCF), translocation factor (TF) and remediation factor (RF) were significantly increased under EDTA 15 and NH4 citrate 25 mmol as against control. Our results demonstrated that castor plant proved satisfactory for phytoextraction on contaminated soil, and EDTA 15 and NH4 citrate 25 mmol had the affirmative effect on the Cd uptake in the artificial Cd-contaminated soil.  相似文献   

17.
Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18–45%, respectively, at the dosage of 10 mM kg?1 soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.  相似文献   

18.
Heavy metal pollution in soils and the high costs of remediation necessitate the evaluation of cheaper alternatives. The aim of this experiment was to evaluate Cd, Pb, Zn, and Cu sorption characteristics of three soils and their influence on the comparative effectiveness of EDTA and legume intercrop on the remediative abilities of maize, mucuna, okra, and kenaf. The sorption studies were done using standard procedures. The EDTA-assisted phytoextraction (6 mmol kg?1) and the cowpea intercrop trials were conducted in triplicate. The metal-spiked soils were planted with maize, kenaf, and mucuna in the EDTA trial and maize, kenaf, and okra were planted in the cowpea intercrop experiment. Cadmium was prefentially sorbed in acid and alkaline soils and Cu in slightly acid soil. Cadmium uptake was significantly lower (P < 0.05) in all the plants. Bioconcentration factors of Pb, Cu, and Zn were higher (P < 0.05) in maize compared with other plants. Phytoremediative ability of the plants in trials were maize > kenaf > mucuna and okra > maize > kenaf, respectively. It was concluded that a legume intercrop can substitute EDTA- assisted phytoextraction to prevent groundwater contamination resulting from high solubility of metals by EDTA.  相似文献   

19.
The aim of the study was to evaluate the efficacy of the multiflora rose var. “Jatar” (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha?1. The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ? ha?1. Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.  相似文献   

20.
In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg?1) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg?1) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg?1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号