首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of inoculated rhizobial strains to increase root nodulation of host legumes often depends on their competitiveness with existing native soil strains. Results of studies to date on rhizobial inoculation for improvement of peanut (Arachis hypogaea L.) production in Argentina have been inconsistent and controversial. In many cases, nodulation and yield of peanut crops have been increased by inoculation of specific rhizobial strains. Native peanut-nodulating strains are generally present in soils of agricultural areas, but their growth-promoting effect is often lower than that of inoculated strains. Many species of the genus Bradyrhizobium interact in a host-specific manner with legume species and form nitrogen-fixing root nodules. Other free-living rhizobacteria such as species of the genus Azospirillum are facultatively capable of interacting with legume roots and promoting plant growth. We evaluated and compared the effects of various single inoculation and co-inoculation treatments on peanut growth parameters in greenhouse and field experiments. In the greenhouse studies, co-inoculation with various Bradyrhizobium strains (native 15A and PC34, and recommended peanut inoculant C145), and Azospirillum brasilense strain Az39 generally resulted in increases in the measured parameters. The growth-promoting effect of 15A was similar to or higher than that of C145. In the field studies, 15A-Az39 co-inoculation had a greater promoting effect on measured growth parameters than did C145-Az39 co-inoculation. Our findings indicate that careful selection of native rhizobacterial strains adapted to peanut soils is useful in strategies for growth promotion, and that 15A in particular is a promising candidate for future inoculant formulation.  相似文献   

2.
Inoculum of an indigenous mixture of arbuscular mycorrhizal fungi (AMF) containingGlomus mosseae, Glomus fasciculatum, Glomus etunicatum, Glomus intraradices andScutellospora sp. was applied to four of the most frequently used crop species in Slovenia: green pepper (Capsicum annuum), parsley (Petroselinum crispum), carrot (Daucus carrota) and tomato (Lycopersicon esculentum). A simple, feasible, and effective protocol for application of AMF biotechnology in horticulture was adopted.Mycorrhizal inoculation significantly increased the plant biomass parameters of pepper, and parsley and the root biomass of carrots. Statistically significant correlations between biomass parameters of pepper, parsley, and the root biomass of carrots with mycorrhizal colonization parameters (mycorrhizal frequency (F%), global mycorrhizal intensity (M%) and arbuscular richness (A%) were calculated. A significant increase in chlorophyll content was observed in mycorrhizal parsley and a significant increase in carotenoids was observed in mycorrhizal parsley, carrots, and tomato fruits. A significant increase in titratable acidity of fruits from inoculated tomato plants indicates prolonged fruiting period of mycorrhizal tomatoes. In addition, inoculation with an indigenous AMF mixture significantly increased the mycorrhizal potential of soil and thus the growth of non-inoculated plants in the second season. Thus, the results confirmed the potential of applying mycorrhizal biotechnology in sustainable horticulture.  相似文献   

3.
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.  相似文献   

4.
A cross-sectional study was conducted in Bobo-Dioulasso, Burkina Faso, to identify the yeast diversity associated with the manufacture of dolo, a traditional fermented beverage of Burkina Faso. From sixty specimens spread onto chromogenic medium plates, sixty-two strains were isolated then identified using MALDI-TOF analysis. Seven yeast species were identified, Saccharomyces cerevisiae (39%) followed by Pichia manshurica (18%) being the most frequent. Forty-three percent of the samples contained Candida species, notably Candida albicans. In conclusion, the combined use of a chromogenic medium and MALDI-TOF analysis reveals a higher diversity in yeast species present in the dolo than previously thought.  相似文献   

5.
A plant’s growth and fitness are influenced by species interactions, including those belowground. In primary successional systems, belowground organisms are known to have particularly important control over plant growth. Exotic plant invasions in these and other habitats may in part be explained by altered associations with belowground organisms compared to native plants. We investigated the growth responses of two foundation grasses on Great Lakes sand dunes, the native grass Ammophila breviligulata and the exotic grass Leymus arenarius, to two groups of soil organisms with important roles in dune succession: arbuscular mycorrhizal fungi (AMF) and plant-parasitic nematodes (PPN). We manipulated the presence/absence of two generalist belowground species known to occur in Great Lakes dunes, Rhizophagus intraradices (AMF) and Pratylenchus penetrans (PPN) in a factorial greenhouse experiment and assessed the biomass production and root architectural traits of the plants. There were clear differences in growth and above- and belowground architecture between Ammophila and Leymus, with Leymus plants being bigger, taller, and having longer roots than Ammophila. Inoculation with Rhizophagus increased above- and belowground biomass production by ~32% for both plant species. Inoculation with Pratylenchus decreased aboveground biomass production by ~36% for both plant species. However belowground, the exotic Leymus was significantly more resistant to PPN than the native Ammophila, and gained more benefits from AMF in belowground tri-trophic interactions than Ammophila. Overall, our results indicate that differences in plant architecture coupled with altered belowground interactions with AMF and PPN have the potential to promote exotic plant invasion.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) have potential to control soil-borne diseases including plant-parasitic nematodes. First, the effects of dual inoculation of mycorrhiza (Rhizophagus irregularis) and two stains of pseudomonads (Pseudomonas jessenii strain R62 and Pseudomonas synxantha strain R81) on tomato (Solanum lycopersicum cv. PT-3) growth were tested. Further, the physiological and biochemical changes caused by these beneficial organisms during infection by the root-knot nematode Meloidogyne incognita were studied. The experiment was conducted under glass house conditions and carried out up to one month after nematode inoculation. Plants treated with dual or individual inoculation of AMF and PGPR showed significantly enhanced plant growth and reduced nematode infection. In addition, they exhibited potent activity of phenolics (28 %) and defensive enzymes i.e. peroxidase (PO; 1.26 fold), polyphenyloxidase (PPO; 1.35 fold) and superoxide dismutase (SOD; 1.09 fold) while a significant reduction in malondialdehyde (MDA; 1.63 fold) and hydrogen peroxide (H2O2; 1.30 fold) content was recorded when compared to the nematode-infected plants. These findings indicate the feasibility of AMF and PGPR individually or in combinations as potential biocontrol agents for the management of root-knot nematodes.  相似文献   

7.
The effect of cultivation of mycorrhizal and non-mycorrhizal plants and mineral fertilization on the arbuscular mycorrhizal fungal (AMF) community structure of maize (Zea mays L.) plants was studied. Soil samples were collected from two field experiments treated for 5 years with three fertilization systems (Control – no fertilization; Mineral – NPK fertilization; and Organic – Farmyard manure fertilization). Soil samples containing soil and root fragments of rapeseed (Brassica napus L., non-mycorrhizal plant) and wheat (Triticum aestivum L., mycorrhizal plant) collected from the field plots were used as native microbial inoculum sources to maize plants. Maize plants were sown in pots containing these inoculum sources for four months under glasshouse conditions. Colonization of wheat roots by AMF, AMF community structure, AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize were investigated. Sixteen AMF species were identified from rhizosphere soil samples as different species of genera Acaulospora, Claroideoglomus, Dentiscutata, Funneliformis, Gigaspora, Quatunica, Racocetra, and Rhizoglomus. Maize plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral NPK-fertilizer or non-fertilized. The results also showed that inoculum from non-mycorrhizal plants combined with mineral fertilization decreased AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize. Our findings suggest that non-mycorrhizal plants, such as B. napus, can negatively affect the presence and the effects of soil inoculation on maize growth. Also, our results highlight the importance of considering the long-term effect of rapeseed cultivation system on the reduction of population sizes of infective AMF, and its effect on succeeding annual crops.  相似文献   

8.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

9.
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.  相似文献   

10.
Regulatory response and interaction of Bradyrhizobium and arbuscular mycorrhizal fungi (AMF) play a vital role in rhizospheric soil processes and productivity of soybean (Glycine max L.). Nitrogen (N) and phosphorus (P) are essential nutrients for plant growth and productivity, the synergistic interaction(s) of AMF and Bradyrhizobium along with rhizospheric beneficial microorganisms stimulate soybean growth and development through enhanced mineral nutrient acquisition (N and P) and improved rhizosphere environment. Such interactions are crucial, especially under low-input eco-friendly agricultural cropping systems, which rely on biological processes rather than agrochemicals to maintain soil quality, sustainability, and productivity. Furthermore, enhancement of N-fixation by root nodules along with AMF-mediated synergism improves plant P nutrition and uptake, and proliferation of phosphate-solubilizing fungi. However, the genetic and/or allelic diversity among native strains, their genes/enzymes and many environmental factors (e.g., soil organic matter, fertilizers, light, temperature, soil moisture, and biotic interactors) affect the interactions between AMF and Bradyrhizobium. New information is available regarding the genetic composition of elite soybean inoculant strains in maximizing symbiotic performance, N-fixing capabilities and depending on N and P status the host-mediated regulation of root architecture. Overall, for sustainable soybean production systems, a deeper understanding of the interaction effects of Bradyrhizobium and AMF co-inoculation are expected in the future, so that optimized combinations of microorganisms can be applied as effective soil inoculants for plant growth promotion and fitness. The objective of this review is to offer insights into the mechanistic interactions of AMF and Bradyrhizobium and rhizopheric soil health, and elucidate the role of environmental factors in regulating growth, development and sustainable soybean productivity.  相似文献   

11.

Background and aims

We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes.

Methods

Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties.

Results

Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates.

Conclusions

This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties.
  相似文献   

12.
In many deforested regions of the tropics, afforestation with native tree species could valorize a growing reservoir of degraded, previously overused and abandoned land. The inoculation of tropical tree seedlings with arbuscular mycorrhizal fungi (AM fungi) can improve tree growth and viability, but efficiency may depend on plant and AM fungal genotype. To study such effects, seven phylogenetically diverse AM fungi, native to Ecuador, from seven genera and a non-native AM fungus (Rhizophagus irregularis DAOM197198) were used to inoculate the tropical potential crop tree (PCT) species Handroanthus chrysanthus (synonym Tabebuia chrysantha), Cedrela montana, and Heliocarpus americanus. Twenty-four plant-fungus combinations were studied in five different fertilization and AMF inoculation treatments. Numerous plant growth parameters and mycorrhizal root colonization were assessed. The inoculation with any of the tested AM fungi improved seedling growth significantly and in most cases reduced plant mortality. Plants produced up to threefold higher biomass, when compared to the standard nursery practice. AM fungal inoculation alone or in combination with low fertilization both outperformed full fertilization in terms of plant growth promotion. Interestingly, root colonization levels for individual fungi strongly depended on the host tree species, but surprisingly the colonization strength did not correlate with plant growth promotion. The combination of AM fungal inoculation with a low dosage of slow release fertilizer improved PCT seedling performance strongest, but also AM fungal treatments without any fertilization were highly efficient. The AM fungi tested are promising candidates to improve management practices in tropical tree seedling production.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.  相似文献   

14.
The inoculation with symbiotic fungi, Arbuscular mycorrhizal fungi (AMF) and/or Piriformospora indica on the growth, nutrient absorption, and induction of antioxidant enzyme activities in plantlets of pineapple ‘Imperial’ (fusariosis-resistant) and ‘Pérola’ (fusariosis-susceptible) in the presence of Fusarium subglutinans f. sp. ananas was investigated. The experiment was comprised by two cultivars, with or without fungal inoculation (Claroideoglomus etunicatum, Rhizophagus clarus, and P. indica, a mixture of all the fungi, and the control—absence of fungal inoculation), with or without applying Fusarium conidia, and with four replicates. In both cultivars, nutrient absorption was higher in the AMF plantlets compared to those inoculated with P. indica or the control ones, although it was more efficient in ‘Imperial’ than in ‘Pérola’. Inoculation with AMF and/or P. indica as well as the pathogen influenced differently the activities of superoxide dismutase, catalase, glutathione reductase, peroxidase, and polyphenol oxidase, in the shoots or roots of pineapple plantlets in both cultivars. Inoculated plantlets with mixture of all the fungi also exhibited a better growth and nutrient absorption, and generally, the ‘Imperial’ responded better than ‘Pérola’. In addition, these plantlets developed better than the control even in the presence of pathogen, indicating that inoculation with AMF and/or P. indica may contribute to the production of more resistant propagative material. Increased antioxidant enzyme activity is a potential strategy for managing this plant for explore biological control as an alternative to reduce environmental and health impacts by reducing the use of fungicides.  相似文献   

15.
Host range and cross-infectivity studies are important for identifying rhizobial strains with potential for use as inoculants. In this study, 10 native soybean rhizobia isolated from Mozambican and South African soils were evaluated for host range, symbiotic effectiveness and ability to induce high rates of photosynthesis leading to enhanced plant growth in cowpea (Vigna unguiculata L. Walp.), Bambara groundnut (Vigna subterranean L. Verdc.), Kersting’s groundnut (Macrotyloma geocarpum Harm) and soybean (Glycine max L. Merr). The test isolates had different growth rates and colony sizes. Molecular analysis based on enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed high genetic diversity among the test isolates. The results further showed that isolate TUTLBC2B failed to elicit nodulation in all test plants, just as TUTNSN2A and TUTDAIAP3B were also unable to nodulate cowpea, Kersting’s bean and Bambara groundnut. Although the remaining strains formed ineffective nodules on cowpea and Kersting’s bean, they induced effective nodules on Bambara groundnut and the two soybean genotypes. Bacterial stimulation of nodule numbers, nodule dry weights and photosynthetic rates was generally greater with isolates TUTRSRH3A, TUTM19373A, TUTMCJ7B, TUTRLR3B and TUTRJN5A. As a result, these isolates elicited significantly increased accumulation of biomass in shoots and whole plants of Bambara groundnut and the two soybean genotypes. Whole-plant symbiotic nitrogen (N) of soybean and Bambara groundnut was highest for the commercial strains CB756 and WB74, as well as for TUTRLR3B, TUTMCJ7B and TUTRSRH3A, suggesting that the three native rhizobial isolates have potential for use as inoculants.  相似文献   

16.
17.
The aim of this work was to assess the sporulation and diversity of arbuscular mycorrhizal fungi (AMF) at different forest sites with Araucaria angustifolia (Bert.) O. Ktze. (Brazil Pine). In addition, a greenhouse experiment was carried out to test the use of traditional trap plants (maize + peanut) or A. angustifolia to estimate the diversity of AMF at each site. Soil samples were taken in two State Parks at southwestern Brazil: Campos do Jordão (Parque Estadual de Campos do Jordão [PECJ]) and Apiaí (Parque Estadual Turístico do Alto Ribeira [PETAR]), São Paulo State, in sites of either native or replanted forest. In PECJ, an extra site of replanted forest that was impacted by accidental fire and is now in a state of recuperation was also sampled. The spore densities and their morphological identification were compiled at each site. In the greenhouse, soil samples from each site were used as inoculum to promote spore multiplication on maize + peanut or A. angustifolia grown on a sandy, low-fertility substrate. Plants were harvested, respectively, after 4 months or 1 year of growth and assessed for mycorrhizal root colonization. Spore counts and identification were also performed in the substrate, after the harvest of plants. Twenty-five taxa were identified considering all sites. Species richness and diversity were greater in native forest areas, being Acaulospora, the genus with the most species. Differences in number of spores, diversity, and richness were found at the different sites of each State Park. Differences were also found when maize + peanut or A. angustifolia were used as trap plants. The traditional methodology using trap plants seems to underestimate the diversity of the AMF. The use of A. angustifolia as trap plant showed similar species richness to the field in PECJ, but the identified species were not necessarily the same. Nevertheless, for PETAR, both A. angustifolia and maize + peanut underestimated the species richness. Because the AMF sporulation can be affected by many conditions, it is impossible to draw detailed conclusions from this kind of survey. More precise experiments have to be set up to isolate the different factors that modulate the ecophysiological interactions between host plant and endophyte.  相似文献   

18.
The role of spore associated bacteria of arbuscular mycorrhizal fungi (AMF) in improving plant growth and alleviating salt stress is a potential area to explore. In the present study, 22 bacteria isolated from the spore walls of AMF were identified to contain 1-aminocyclopropane-1-carboxylate deaminase. These were tested for their ability to improve seed germination and alleviate salt stress in the early growth of maize. Among the isolates, 19 bacteria that were able to grow at 4?% NaCl were used for germination assay. Two bacteria and seven bacteria significantly improved maize seed germination at 100 mM NaCl and 200 mM NaCl, respectively. Based on the presence of plant growth promoting (PGP) characters and the ability to improve seed germination, five strains were chosen for further experiments. At 0 mM NaCl, all the strains were able to increase maize shoot and root growth significantly. At 25 mM NaCl, except for Bacillus aryabhattai S210B15, all the strains were able to increase shoot and root growth significantly. At 50 mM NaCl, Bacillus aryabhattai S110B3 and B. aryabhattai S210B15 significantly improved shoot length, whereas, Pseudomonas koreensis S2CB35 and B. aryabhattai S210B15 significantly increased root length. Although salinity increased ethylene production in maize, bacterial inoculation significantly reduced the ethylene level at 0, 25 and 50 mM NaCl. Among the five strains, only P. koreensis S2CB35 showed the presence of PGP functional traits of nifH, acdS and nodA genes.  相似文献   

19.
The symbiosis of plants with arbuscular mycorrhizal fungi (AMF) may become parasitic if the cost:benefit ratio (carbon:phosphorus ratio) increases. In case of mycorrhizal parasitism, a plant may prevent growth depression through the reduction of root colonization as a form of control over the symbiosis. In this greenhouse study, we attempted to manipulate the cost:benefit ratio of the arbuscular mycorrhizal symbiosis by shading and/or phosphorus (P) fertilization in the differentially mycotrophic plant species Hieracium pilosella and Corynephorus canescens. By repeated sampling of soil cores, we assessed the temporal progress of plant investment towards mycorrhizal structures as a measure of plant control over the AMF. Unexpectedly, we found no obvious treatment effects on mycorrhizal growth dependency (MGD), most likely caused by constant N-limitation in AM plants being enhanced by P-fertilization and shade probably not exacerbating plant C-budget for AMF. This highlights the importance of N:P:C stoichiometry for the outcome of the symbiosis. Nevertheless, we found possible control mechanisms in shaded H. pilosella, with considerably higher resource investments into root than into hyphal growth, while root colonization was only marginally suppressed. This control only manifested after 4 weeks of growth under potentially detrimental conditions, emphasizing the importance of time in plant control over the arbuscular mycorrhizal symbiosis. In contrast, the less mycotrophic C. canescens did not exhibit obvious changes in mycorrhizal investments in reaction to shading and P-fertilization, possibly because the low mycotrophy and AMF colonization already imposes a functioning control mechanism in this species. Our study suggests that highly mycotrophic plants may have a stronger need to keep AMF in check than less mycotrophic plants, which may have implications for the role of mycotrophy in the outcome of symbiotic interactions in natural situations.  相似文献   

20.
Non-native plants often dominate novel habitats where they did not co-evolve with the local species. The novel weapons hypothesis suggests that non-native plants bring competitive traits against which native species have not adapted defenses. Novel weapons may directly affect plant competitors by inhibiting germination or growth, or indirectly by attacking competitor plant mutualists (degraded mutualisms hypothesis). Japanese knotweed (Fallopia japonica) and European buckthorn (Rhamnus cathartica) are widespread plant invaders that produce potent secondary compounds that negatively impact plant competitors. We tested whether their impacts were consistent with a direct effect on the tree seedlings (novel weapons) or an indirect attack via degradation of seedling mutualists (degraded mutualism). We compared recruitment and performance using three Ulmus congeners and three Betula congeners treated with allelopathic root macerations from allopatric and sympatric ranges. Moreover, given that the allelopathic species would be less likely to degrade their own fungal symbiont types, we used arbuscular mycorrhizal (AMF) and ectomycorrhizal (ECM) tree species to investigate the effects of F. japonica (no mycorrhizal association) and Rhamnus cathartica (ECM association) on the different fungal types. We also investigated the effects of F. japonica and R. cathartica exudates on AMF root colonization. Our results suggest that the allelopathic plant exudates impact seedlings directly by inhibiting germination and indirectly by degrading fungal mutualists. Novel weapons inhibited allopatric seedling germination but sympatric species were unaffected. However, seedling survivorship and growth appeared more dependent on mycorrhizal fungi, and mycorrhizal fungi were inhibited by allopatric species. These results suggest that novel weapons promote plant invasion by directly inhibiting allopatric competitor germination and indirectly by inhibiting mutualist fungi necessary for growth and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号